İçeriğe atla

Black-Scholes modeli

Black-Scholes modeli, finansal matematikte bir opsiyon fiyatlama modelidir. İsmini, bu modeli 1973 yılında yayınlayan[1] Fischer Black ve Myron Scholes'tan almıştır. Bu opsiyon modelinin sonucunda, halen opsiyon fiyatlamada piyasa katılımcılarınca yoğun olarak kullanılmakta olan Black-Scholes formülü elde edilmiştir. Black-Scholes modeli, aslında rassal hareketler izleyen sıvı moleküllerini ortaya koyan Brown hareketinin hisse fiyatlarına ve finansal hareketlere uyarlanması sonucu ortaya çıkmıştır. Daha önce bu uyarlamanın öncüsü sayılabilecek varsayımı Louis Bachelier 1900'de "Théorie de la spéculation" başlığıyla yazdığı doktora tezinde[2] yapmıştır. Yine, benzer uyarlamalar Paul Samuelson, Sheen Kassouf, Edward O. Thorp and Case Sprenkle tarafından da yapılmıştır. Ancak, Black ve Scholes'un zamandaşlarının önüne geçtiği nokta opsiyon fiyatlarına ihtiyaç duyan opsiyon piyasa katılımcılarına piyasada gözlemlenen veri ve değişkenlerle pratik bir şekilde hesaplanabilen analitik bir formül ortaya koymalarıdır.

Robert Merton'un modelde çözülemeyen bir bölümü çözmesinden sonra, model, Black-Scholes-Merton modeli olarak anılmaya da başlamıştır. Bu çalışmaları sayesinde, Merton ve Scholes, 1997de Ekonomi alanında Nobel Ödülü almışlardır.[3]

Varsayımlar

Black-Scholes modeli ve bunun sonucunda elde edilen Black-Scholes formülü şu varsayımlara dayanmaktadır:

  • Söz konusu dayanak varlığın (Black-Scholes özelinde hisse senedinin) fiyatının hareketleri (St) geometrik Brown hareketini izlemektedir. Yani, sabit bir sapma () ve volatilite () olmak üzere;
  • Söz konusu hissede açığa satış (short sell) yapılması mümkündür.
  • Arbitraj imkânı yoktur.
  • Hisselerde el değiştirme süreklidir.
  • Alımsatım maliyeti veya vergi yoktur.
  • Bütün yatırım araçları kesirli bir şekilde alınıp satılabilmelidir; örneğin, bir dayanak varlığın yüzde birini almak mümkün olmalıdır.
  • Risksiz faiz ile borç alınabilmelidir.
  • Hisse temettü dağıtmamalıdır; bu kural sadece basit Black-Scholes modeli için geçerlidir.

Black-Scholes formülü

Black-Scholes formülü 1973 yılında Fischer Black ve Myron Scholes tarafından yazılan makalede[1] ilk defa bahsedilen ve Black-Scholes modeline bağlı olarak elde edilmiş bir opsiyon fiyatlama formülüdür. Avrupa tipi ödenişleri olan alım ve satım opsiyonlarının fiyatlanmasında piyasa katılımcılarınca yoğun olarak kullanılmaktadır.

Formülün ifadesi

Black–Scholes modelinin varsayımları altında, Avrupa tipi alım opsiyonu (European call option) için,

  • opsiyon kullanma fiyatı K
  • hissenin şu andaki fiyatı S, (yani opsiyonun verdiği hak ile T zaman sonra, hisseyi K fiyatından alma imkânımız var),
  • sabit faiz r ve sabit volatilite

olmak üzere, opsiyonun bugünkü fiyatı şu şekilde verilir.

Burada;

Bu formülde standart normal dağılımın kümülatif dağılım fonksiyonudur.

Bir satım opsiyonunun fiyatı , yukarıda verilen formülü ve alım-satım paritesi (put-call parity) kullanılarak hesaplanabilir ve aşağıdaki şekilde düzenlenebilir:

Kanıt

Black ve Scholes'un orijinal kanıtının fikri

Black-Scholes formülünün kanıtı bugün Black-Scholes kısmi diferansiyel denklemi olarak bilinen diferansiyel denklemlerin çözümünden geçmektedir.[1] Burada esas ilk fikir, opsiyon ve opsiyon dayanak varlığından oluşan bir portföy yaratmak ve bu portföyü küçük zaman aralıklarında dayanak varlığın piyasa fiyatına duyarsız hale getirmektir. Sonucunda, Black-Scholes kısmi diferansiyel denklemi elde edilir. İkinci esas fikir ise bu diferansiyel denklemi, değişik dönüşümler ve yerine koymalar vasıtasıyla ısı denklemine dönüştürmektir.

Martingaller yoluyla kanıt

Bu yöntemde Girsanov teoremi aracılığıyla riske duyarsız ölçü olan 'ya geçilir ve iskontolu hisse fiyatı sürecinin martingal olduğu elde edilir. Bu sayede, opsiyonun vadesindeki ödenişin iskontolu halinin beklenen değeri kolaylıkla hesaplanabilir. Diyelim ki bir olasılık ölçüsü 'de

verilmiş olsun. Girsanov teoreminde alırsak, o zaman yeni ölçüde de bir Brown hareketi olur ve sağlanır. Bu halde, herhangi bir için

olur. Elimizde sadece difüzyon terimleri kaldığı için artık iskontolu dayanak varlık spot fiyatı sürecinin riske duyarsız ölçüde martingal olduğu açıktır. Aynı zamanda,

olur. Diğer deyişle, riske duyarsız ölçüde, dayanak varlık spot fiyatı sürecinin 'deki deterministik terimi , riske duyarsız ölçüde, risksiz faiz ile yer değiştirir. Öbür taraftan, Ito önsavı sayesinde

hesaplanır. Her iki tarafta integraller uygun aralıklarda alındıktan sonra

bulunur. Geriye kalan, koyup bir alım opsiyonun zamanındaki fiyatının olduğundan yola çıkarak, beklenen değeri tanımı gereği integrale çevirip hesaplamaktır. Yani,

Integral fonksiyonunu fonksiyonundan kurtarmak için olduğu hesaplanır. Burada

alınmıştır. Buradan sonra kalkülüs teknikleri kullanılarak integraller ilk önce tanımlanarak

haline getirilir. Burada standart normal dağılımın kümülatif dağılım fonksiyonudur. ve arasındaki ilişki ve 'nin özellikleri kullanılarak

bulunur. Black-Scholes formülünün orijinal hali alınarak elde edilir.

Risk hassasiyetleri (Yunanlar)

Black-Scholes formülü üzerinden bir Avrupa tipi opsiyonun risk hassasiyetleri analitik olarak hesaplanabilir.

AçıklamaAlım opsiyonuSatım opsiyonu
DeltaDayanak varlığın spot fiyatına göre değişim
GamaDeltaya göre değişim
Vega [4][5]Volatiliteye göre değişim
ThitaVade gününe kalan zamana göre değişim
RoFaiz oranına göre değişim

Ayrıca bakınız

Kaynakça

  1. ^ a b c Black, Fischer; Scholes, Myron (1973). "The Pricing of Options and Corporate Liabilities". Journal of Political Economy. 81 (3): 637-654. doi:10.1086/260062.  [1] 31 Mart 2024 tarihinde Wayback Machine sitesinde arşivlendi. (Black ve Scholes'un orijinal makalesi.)
  2. ^ Bachelier, Louis. "The Theory of Speculation (İngilizce)=". 15 Ağustos 2024 tarihinde kaynağından arşivlendi. Erişim tarihi: 16 Ağustos 2024. 
  3. ^ Fischer Black, 1995 yılında vefat etmiştir. Fischer Black, 1984 yılından gırtlak kanserinden öldüğü 1995 yılına kadar Goldman Sachs'ta çalışmıştır.
  4. ^ Bu harf Yunanca'da yoktur.
  5. ^ Paul Wilmott Frequently Asked Questions in Quantitative Finance 30 Eylül 2022 tarihinde Wayback Machine sitesinde arşivlendi. adlı kitabında bu gibi risk hassasiyetlerine Piç-Yunan adını takmıştır. Bu terim, formülün çıkarımında sabit tutulup sonra türeve tabi tutulan paramatrelerin yanıltıcı bilgi verebileceğine ve risk yönetiminde sorunlar çıkarabileceğine işaret etmektedir.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Del işlemcisi</span>

Yöney analizinde del işlemcisi, 3 boyutlu Kartezyen koordinatlarda nabla işlemcisine denk gelir ve simgesiyle gösterilir.

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

Lorentz kuvveti, fizikte, özellikle elektromanyetizmada, elektromanyetik alanların noktasal yük üzerinde oluşturduğu elektrik ve manyetik kuvvetlerin bileşkesidir. Eğer q yük içeren bir parçacık bir elektriksel E ve B manyetik alanın var olduğu bir ortamda v hızında ilerliyor ise bir kuvvet hissedecektir. Oluşturulan herhangi bir kuvvet için, bir de reaktif kuvvet vardır. Manyetik alan için reaktif kuvvet anlamlı olmayabilir, fakat her durumda dikkate alınmalıdır.

Direnç - kapasitör devresi (RC devresi) veya RC filtresi direnç ve kapsitörlerden oluşan ve gerilim veya akım kaynağı tarafından beslenen bir elektrik devresidir.

Black-Scholes denklemi, 1973 yılında Fischer Black ve Myron Scholes tarafından yazılan makalede elde edilen Black-Scholes formülünün kanıtında ilk defa elde edilmiş ve daha genel türev ürünleri için de uyarlanabilen bir kısmi diferensiyel denklemdir. Black-Scholes formülünün orijinal kanıtındaki esas fikir, opsiyon ve opsiyon dayanak varlığından oluşan bir portföy yaratmak ve bu portföyü küçük zaman aralıklarında dayanak varlığın piyasa fiyatına duyarsız hale getirmektir. Sonucunda, Black-Scholes denklemi elde edilir ve elde edilen diferansiyel denklem, değişik dönüşümler ve yerine koymalar vasıtasıyla ısı denklemine dönüştürülür.

Olasılık kuramı ve istatistik bilim kollarında, çokdeğişirli normal dağılım veya çokdeğişirli Gauss-tipi dağılım, tek değişirli bir dağılım olan normal dağılımın çoklu değişirli hallere genelleştirilmesidir.

<span class="mw-page-title-main">Log-normal dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında log-normal dağılım logaritması normal dağılım gösteren herhangi bir rassal değişken için tek-kuyruklu bir olasılık dağılımdır. Eğer Y normal dağılım gösteren bir rassal değişken ise, bu halde X= exp(Y) için olasılık dağılımı bir log-normal dağılımdır; aynı şekilde eğer X log-normal dağılım gösterirse o halde log(X) normal dağılım gösterir. Logaritma fonksiyonu için bazın ne olduğu önemli değildir: Herhangi iki pozitif sayı olan ab ≠ 1 için eğer loga(X) normal dağılım gösterirse, logb(X) fonksiyonu da normaldir.

Genelleştirilmiş Pareto dağılımı ailesi, olasılık kuramı ve istatistik bilim dallarında geliştirilen ve özellikle iktisat incelemelerinde gelir ve servet dağılımı analizi için kullanılan iki parametreli Pareto dağılımının daha geliştirilmiş üç parametreli bir şekli olur. Bu dağılım da sürekli olasılık dağılımıdır

<span class="mw-page-title-main">Gauss fonksiyonu</span>

Matematikte Gauss fonksiyonu, bir fonksiyon biçimidir ve şöyle ifade edilir:

Doğrusal cebirde veya daha genel ifade ile matematikte matris çarpımı, bir matris çiftinde yapılan ve başka bir matris üreten ikili işlemdir. Reel veya karmaşık sayılar gibi sayılarda temel aritmetiğe uygun olarak çarpma yapılabilir. Başka bir ifade ile matrisler, sayı dizileridir. Bu yüzden, matris çarpımını ifade eden tek bir yöntem yoktur. "Matris çarpımı" terimi çoğunlukla, matris çarpımının farklı yöntemlerini ifade eder. Matris çarpımının anahtar özellikleri şunlardır: Asıl matrislerin satır ve sütun sayıları, ve matrislerin girişlerinin nasıl yeni bir matris oluşturacağıdır.

18. yy. ve sonrasında geliştirilmiş, genellikle vektörel mekanik olarak nitelendirilen ve orijinalinde Newton mekaniği olarak bilinen analitik mekanik, klasik mekaniğin matematiksel fizik kaynaklarıdır. Model harekete göre analitik mekanik, Newton’un vektörel enerjisinin yerine, hareketin iki skaler özelliği olan kinetik enerjiyi ve potansiyel enerjiyi kullanır. Bir vektör, yön ve nicelik ile temsil edilirken bir skaler, nicelik ile(yoğunluğu belirtirken) temsil edilir. Özellikle Lagrange mekaniği ve Hamilton mekaniği gibi analitik mekanik de, sorunları çözmek için bir sistemin kısıtlamalarının ve tamamlayıcı yollarının kavramını kullanarak klasik mekaniğin kullanım alanını etkili bir şekilde yapılandırır. Schrödinger, Dirac, Heisenberg ve Feynman gibi kuram fizikçileri bu kavramları kullanarak kuantum fiziğini ve onun alt başlığı olan kuantum alan teorisini geliştirdiler. Uygulamalar ve eklemelerle, Einstein’a ait kaos teorisine ve izafiyet teorisine ulaşmışlardır. Analitik mekaniğin çok bilindik bir sonucu, modern teorik fiziğin çoğunu kaplayan Noether teoremidir.

Elektromanyetizma fiziğinde, Abraham-Lorentz kuvveti elektromanyetik radyasyon yayması nedeniyle hızlanan yüklü bir parçacıktaki geri tepme kuvvet idir. Ayrıca radyasyon reaksiyon kuvveti veya kendinden kuvvet denir. Formül özel görelilik teorisini önceler ve ışık hızı düzeninin hızlarında geçerli değildir. Bunun göreli genellemesine "Abraham-Lorentz-Dirac kuvveti" denir. Bunların her ikisi de kuantum fiziği değil, klasik fizik 'in bilgi kapsamındadır. Bu nedenle yaklaşık olarak Compton dalga boyu veya altındaki mesafelerde geçerli olmayabilir. Ancak tamamıyla kuantum ve göreli olan benzer bir formül vardır, bu formül "Abraham-Lorentz-Dirac-Langevin denklemi" olarak adlandırılır.

<span class="mw-page-title-main">Fermi'nin etkileşimi</span>

Parçacık fiziğinde, Fermi etkileşimi beta bozunmasının 1933'te Enrico Fermi tarafından önerilmiş bir açıklamasıdır. Teori, dört fermiyonun birbiriyle direkt etkileştiğini varsayar. Bu etkileşim bir nötronun bir elektron, bir nötrino ve bir protonla doğrudan bağlanmasıyla bir nötronun beta bozunmasını açıklar.

<span class="mw-page-title-main">Weber sayısı</span>

Weber sayısı (We), akışkanlar mekaniği alanında farklı iki akışkan arasındaki ara yüzeylerin bulunduğu akışkan akışlarını analiz ederken sıkça kullanılan bir boyutsuz sayıdır ve özellikle yüksek derecede eğilmiş yüzeylere sahip çok fazlı akışlar için oldukça faydalıdır. Bu sayı, Moritz Weber (1871–1951)'in adıyla anılmaktadır. Bu sayı, akışkanın eylemsizliğinin yüzey gerilimine kıyasla göreceli önemini ölçmek için kullanılan bir parametre olarak düşünülebilir. İnce film akışlarının ve damlacık ile kabarcık oluşumlarının analizinde büyük önem taşır.

Finansal matematikte risk hassasiyeti bir türev ürününün ya da bir portföyün değerinin değişken veya parametrelere karşı olan değişimini veren niceliktir. Risk hassasiyetleri ise bu niceliklerin hepsine birden verilen addır.

Black modeli ya da Black76 modeli, matematiksel finansta bir opsiyon fiyatlama modelidir. İsmini, bu modeli 1976 yılında yayınlayan Fischer Black'ten almıştır. Bu opsiyon modelinin sonucunda, halen opsiyon fiyatlamada piyasa katılımcılarınca yoğun olarak kullanılmakta olan Black formülü elde edilmiştir.

Finansta ve finansal matematikte binom modeli ya da Cox-Ross-Rubinstein modeli, opsiyon ya da türev ürünlerini fiyatlamada kullanılan nümerik bir yönteme verilen addır. Model, opsiyonların dayanak varlığının değişen fiyatlarının kesikli-zamana uyarlanması sonucu oluşan bir modeldir.

Matematiğin bir alt dalı olan olasılık teorisinde Girsanov teoremi, stokastik süreçlerin ölçü değişimleri altında nasıl değiştiğini gösteren ve özellikle finansal matematikte yaygın uygulaması olan bir teoremdir. Teorem, finansal matematikte bir dayanak varlığın fiziksel ya da gözlemlenen bir ölçüde yazılan fiyat sürecinin riske duyarsız ölçüye nasıl dönüştürüleceğini gösterir. Teorem, stokastik diferansiyel denklemlerin zayıf çözümlerinin varlığını ve biricikliğini kanıtlamakta da yararlıdır.