İçeriğe atla

Biyopolimer

DNA yapısında, nükleik asit çift sarmal 'ı oluşturan bir çift' 'biyopolimer' , polinükleotit 'dir.

Biyopolimerler, biyolojik kaynaklardan elde edilen ve doğada çözünebilen polimerlerdir. Bitkilerden, hayvanlardan veya mikroorganizmalardan elde edilebilir ve polimerik biyomoleküllerdir.[1] Doğal olarak oluşan polimerlerin yanı sıra, insanlar tarafından biyolojik kaynaklardan elde edilen sentetik polimerler de biyopolimerler olarak kabul edilir.[2]

Biyopolimerler daha büyük yapılar oluşturmak için kovalent olarak bağlı monomerik birimler içerir. Kullanılan monomer birimlere ve oluşan biyopolimerin yapısına göre sınıflandırılmış üç ana biyopolimer sınıfı vardır: 13 veya daha fazla nükleotid monomerinden oluşan uzun polimerler olan polinükleotitler (RNA ve DNA); amino asitlerin kısa polimerleri olan polipeptitler; ve genellikle doğrusal bağlı polimerik karbonhidrat yapıları olan polisakaritlerdir. Biyopolimerlerin diğer örnekleri arasında doğal kauçuk, suberin, melanin ve lignin bulunur.[3]

Biyoplastik ve sentetik polimerler arasındaki ana belirleyici fark yapılarında bulunabilir. Tüm polimerler monomer adı verilen tekrarlayan birimlerden yapılmıştır.[4] Biyopolimerler genellikle iyi tanımlanmış bir yapıya sahiptir, ancak bu tanımlayıcı bir karakteristik değildir (örnek: lignoselüloz): Proteinler söz konusu olduğunda tam kimyasal bileşim ve bu birimlerin düzenlendiği sıra biyomoleküler yapı olarak adlandırılır.[5] Biyopolimerlerin birçoğu kendi biyolojik fonksiyonlarını belirleyen ve birincil yapılarına karmaşık bir şekilde bağlı olan karakteristik kompakt şekillere kendiliğinden katlanır. Yapısal biyoloji, biyopolimerlerin yapısal özelliklerinin incelenmesidir. Buna karşılık, çoğu sentetik polimer daha basit ve daha rastgele (veya stokastik) yapılara sahiptir. Bu gerçek, biyopolimerlerde eksik olan bir moleküler kütle dağılımına yol açar. Aslında, sentezlerin çoğu invivo sistemde şablona dayalı bir işlemle kontrol edildiğinden, bir tipteki tüm biyopolimerler (belirli bir protein) hepsi aynıdır: hepsi benzer dizileri ve sayıları içerir ve dolayısıyla hepsi de aynı kütledir. Bu olguya, sentetik polimerlerde karşılaşılan çoklu dağılıma karşı monodispersite denir. Sonuç olarak, biyopolimer 1'in bir çoklu-dağılma indisine sahiptir.[6]

Kaynakça

  1. ^ "Arşivlenmiş kopya". 25 Nisan 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 25 Nisan 2019. 
  2. ^ Şevket (26 Ağustos 2023). "Biyopolimerler". Metalurji ve Malzeme Mühendisliği. 4 Eylül 2023 tarihinde kaynağından arşivlendi. Erişim tarihi: 4 Eylül 2023. 
  3. ^ "Arşivlenmiş kopya". 25 Nisan 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 25 Nisan 2019. 
  4. ^ "Arşivlenmiş kopya". 25 Nisan 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 25 Nisan 2019. 
  5. ^ "Arşivlenmiş kopya" (PDF). 23 Kasım 2018 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 25 Nisan 2019. 
  6. ^ "Arşivlenmiş kopya". 25 Nisan 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 25 Nisan 2019. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Protein</span> polipeptitlerin işlevsellik kazanması sonucu oluşan canlıların temel yapı birimi

Proteinler, bir veya daha fazla uzun amino asit artık zincirini içeren büyük biyomoleküller ve makromolekül'lerdir. Proteinler organizmalar içinde, hücrelere yapı ve organizmalar sağlayarak ve molekülleri bir konumdan diğerine taşıyarak metabolik reaksiyonları katalizleme, DNA kopyalama, uyaranlara yanıt verme dahil olmak üzere çok çeşitli işlevler gerçekleştirir. Proteinler, genlerinin nükleotit dizisi tarafından dikte edilen ve genellikle faaliyetini belirleyen özel 3D yapıya protein katlanmasıyla sonuçlanan amino asit dizilimlerinde birbirlerinden farklıdır.

<span class="mw-page-title-main">Polimer</span> tekrar eden yapısal birimlere sahip makromoleküllerden oluşan madde

Polimer, bir veya daha çok monomer türünden türetilen birçok tekrarlayan alt birimden oluşan çok büyük moleküllerden veya makromoleküllerden oluşan bir madde veya malzemedir. Geniş özellik spektrumları nedeniyle, hem sentetik hem de doğal polimerler günlük yaşamda temel ve yaygın roller oynar.

<span class="mw-page-title-main">Plastik</span>

Plastik; karbon (C), hidrojen (H), oksijen (O), azot (N) ve diğer organik ya da inorganik elementlerin oluşturduğu monomer adı verilen; basit yapıdaki moleküllü gruplardaki bağın koparılarak polimer adı verilen uzun ve zincirli bir yapıya dönüştürülmesi ile elde edilen malzemelere verilen isimdir. Plastik kelimesi, "şekillendirilebilen veya kalıplanabilen" anlamına gelen Yunanca πλαστικός (plastikos) ve "kalıplanmış" anlamına gelen πλαστός (plastos) kelimesinden türetilmiştir.

<span class="mw-page-title-main">Organik kimya</span> karbon temelli bileşiklerin yapılarını, özelliklerini, tepkimelerini ve sentez yollarını inceleyen kimya dalı

Organik kimya, organik bileşiklerin ve organik maddelerin yani karbon atomlarını içeren çeşitli formlardaki maddelerin yapısını, özelliklerini ve reaksiyonların bilimsel çalışmasını içeren, kimyanın bir alt dalıdır. Yapının incelenmesi yapısal formüllerini belirler. Özelliklerin incelenmesi, fiziksel ve kimyasal özellikleri ve davranışlarını anlamak için kimyasal reaktivitenin değerlendirilmesidir. Organik reaksiyonların incelenmesi doğal ürünlerin, ilaçların ve polimerlerin kimyasal sentezini ve bireysel organik moleküllerin laboratuvarda ve teorik çalışma yoluyla incelenmesidir.

Lignin, Lignen ya da Odunlaşma, bitkilerde, hücre çeperi içerisinde bulunan lignin, selülozla birlikte bitkinin odunsu yapısını ve dayanıklılığını sağlar. Kâğıt yapımında kullanılmaz fakat kâğıt üretiminin yan ürünüdür. 2. ve 3. sınıf kâğıtlarda bolca bulunur. Lignin zamanla bozunarak kağıdın ömrünü kısaltır.

Monomer, diğer monomer molekülleri ile birlikte reaksiyona girerek daha büyük bir polimer zinciri veya üç boyutlu bir ağ oluşturabilen bir moleküldür, bu sürece polimerizasyon adı verilir.

<span class="mw-page-title-main">Dimer</span> monomer adı verilen iki alt üniteden oluşan kimyasal ya da biyolojik yapı

Bir dimer, monomer adı verilen iki alt üniteden oluşan kimyasal ya da biyolojik yapıdır. Bu alt üniteler molekül içi ya da -daha zayıf olan- moleküller arası kuvvetlerle birlikte tutulur.

<span class="mw-page-title-main">Kitin</span>

Kitin önemli polisakkaritlerden biridir. Eklembacaklılar tarafından dış iskeletin kurulmasında kullanılan ve mantarların hücre çeperini oluşturan karbonhidrata kitin denir.

Proteinler her organizmada bulunan önemli bir makromolekül sınıfıdır. Proteinler, 20 farklı tip L-α-amino asitten meydana gelen polimerlerdir. Amino asitler birbiriyle reaksiyona girdikten sonra meydana gelen polimerde bu amino asitlerden arta kalan birimlere amino asit kalıntısı denir. 40 kalıntıdan daha kısa olan zincirler için protein yerine genelde peptit terimi kullanılır. Biyolojik fonksiyonlarını yerine getirebilmek için proteinler uzay içinde belli bir biçim alacak şekilde katlanırlar. Bu katlanmayı yönlendiren güçler, protein atomları arasındaki hidrojen bağı, iyonik etkileşimler, van der Waals kuvvetleri ve hidrofobik istiflenme gibi, kovalent olmayan etkleşimlerdir. Proteinlerin işlevlerini moleküler düzeyde anlayabilmek için genelde onları üç boyutlu yapısının çözülmesi gerekir. Protein yapısını çözmek için X-ışını kristalografisi ve NMR spektroskopisi kullanılır, bunlar yapısal biyolojinin başlıca yöntemleri arasında yer alır.

Makromolekül, küçük yapıtaşlarının yani monomerlerin polimerleşmesiyle oluşmuş çok büyük moleküler yapılardır.Örneğin amino asitlerin polimerleşmesiyle proteinler ; şeker, fosfat asidi ve azot içeren heterosiklik baz (purin/pirimidin) polimerleşmesiyle nükleik asitler oluşur.Makromolekül terimi biyokimyada üç büyük yapı olan nükleik asit, protein, karbonhidrat için kullanılır. Lipitler makromolekül sınıfına girmez, biyomolekül olarak tanımlanır. Makromolekül tanımı sentetik polimerler ve polimer olmayan büyük kütleli moleküller için de kullanılabilir.

<span class="mw-page-title-main">Biyoplastik</span>

Biyoplastikler, bitkisel yağlar ve yağlar, mısır nişastası, saman balyası, odun yongaları, yiyecek artıkları gibi yenilenebilir biyokütle kaynaklarından elde edilen plastiklerdir. Biyoplastik, tarımsal yan ürünlerden ve ayrıca kullanılmış plastik şişelerden ve mikroorganizmalar kullanan diğer kaplardan yapılabilir. Fosil yakıtları plastikler gibi yaygın plastikler, petrol veya doğalgazdan elde edilir. Biyoplastiklerin tümü biyolojik olarak parçalanamaz ve meta fosil yakıt türevli plastiklerden daha kolay biyolojik olarak parçalanamaz. Biyoplastikler genellikle nişasta, selüloz ve laktik asit dahil şeker türevlerinden elde edilir. 2014 itibarıyla, biyoplastikler küresel polimer pazarının yaklaşık %0,2'sini temsil ediyordu.

<span class="mw-page-title-main">Biyomateryal</span>

Biyomateryal veya biyomalzeme tıbbi sistemler için biyolojik sistemlerle etkileşime girecek şekilde tasarlanmış herhangi bir maddedir. Terapötikdir, vücudun doku işlevini tedavi eder, güçlendirir, onarır veya değiştirir veya tanısaldır. Bir bilim olarak, biyomalzemeler yaklaşık elli yıldır mevcuttur. Biyomalzeme çalışmasına biyomalzeme bilimi veya biyomalzeme mühendisliği denir. Birçok şirketin yeni ürünlerin geliştirilmesine büyük miktarda para yatırmasıyla tarihi boyunca istikrarlı ve güçlü bir büyüme yaşadı. Biyomalzeme bilimi, tıp, biyoloji, kimya, doku mühendisliği ve malzeme bilimi unsurlarını kapsar. Biyoplastik, biyoplazma ve biyopolimer gibi ürünler de biyomalzemedir.

<span class="mw-page-title-main">Viral protein</span> virüslerde bulunabilen bir protein türü

Viral protein, virüsün hem bir bileşeni hem de bir ürünüdür. Viral proteinler işlevlerine göre yapısal proteinler, yapısal olmayan proteinler, düzenleyici ve yardımcı proteinler olarak gruplandırılırlar. Virüsler canlı değildir ve kendi başlarına çoğalma araçlarına sahip değildirler. Çoğalmak için konakçı hücrelerinin enerji metabolizmalarına, enzimlerine ve yapı öncüllerine bağlıdırlar. Bu nedenle, virüsler kendi viral proteinlerinin birçoğunu kodlamazlar, aksine çoğaltma için ihtiyaç duydukları viral proteinleri üretmek için konakçı hücrenin organellerini ve döngülerini kullanırlar.

Emülsiyon polimerizasyonu genellikle su, monomer ve yüzey aktif madde içeren bir emülsiyon ile başlayan bir tür radikal polimerizasyondur. En yaygın emülsiyon polimerizasyonu tipi, su içinde yağ emülsiyonu olup, bu polimerizasyon tipinde monomer damlacıkları, su fazı içinde olan yüzey aktif cisimleri ile emülsiyon haline getirilir. Bazı polivinil alkoller veya hidroksietil selüloz gibi suda çözünen polimerler, emülsiyonlaştırıcı/stabilizatör olarak kullanılabilir. "Emülsiyon polimerizasyonu" adı, tarihsel bir yanlış anlamadan kaynaklanan, hatalı bir adlandırmadır. Polimerizasyon aslında emülsiyon damlacıklarında meydana gelmez, işlemin ilk birkaç dakikasında kendiliğinden oluşan lateks/kolloid parçacıklarında gerçekleşir. Bu lateks partikülleri tipik olarak 100 nm büyüklüğünde olup birçok polimer zincirinden oluşurlar. Her partikül yüzey aktif madde ('sabun') ile çevrili olduğu için partiküllerin birbiriyle pıhtılaşması önlenir; yüzey aktif maddenin üzerindeki elektrik yükü diğer partikülleri elektrostatik olarak iter. Sabun yerine suda çözünür polimerler stabilizatör olarak kullanıldığında, parçacıklar arasındaki itme, suda çözünür polimerlerin parçacığın üzerinde diğer parçacıkları iten bir 'tüylü tabaka' oluşturması ile olur. Bunun nedeni parçacıkları bir araya getirmenin tüylü tabakadaki polimer zincirlerinin sıkıştırılmasını gerektirmesidir.

<span class="mw-page-title-main">Yapısal biyoloji</span>

Yapısal biyoloji, biyolojinin özellikle amino asitlerden yapılmış olan proteinler, nükleotitlerden yapılmış RNA ve DNA gibi nükleik asitler ve lipitlerden oluşmuş membranlar olmak üzere biyolojik makromoleküllerin yapılarını ve uzamsal dizilişlerini inceleyen bir dalıdır. Yapısal biyoloji asıl olarak biyofizik yöntemleri ile makromoleküllerin atom düzeyinde üç boyutlu yapılarının belirlenmesi, yapısal değişikliklerinin temel prensipleri, moleküler hareketlerin analizi ve bu yapıların dinamiği ile ilgilenir. Makromoleküller hücrelerin hemen hemen tüm işlevlerini yerine getirir ve bunu da yapabilmek için belirli üç boyutlu şekillere girerler. Moleküllerin "üçüncül yapı"sı olarak adlandırılan bu yapılar her molekülün temel bileşimi ya da "birincil yapı"ları ile karmaşık bir şekilde bağlantılıdır.

<span class="mw-page-title-main">Albert Eschenmoser</span> İsviçreli organik kimyager

Albert Eschenmoser (5 Ağustos 1925, Erstfeld - 14 Temmuz 2023), karmaşık heterosikilik doğal bileşiklerin, en önemlisi B12 vitamininin, sentezi üstüne çalışmaları ile tanınan İsviçreli organik kimyager. Organik sentez alanına yaptığı önemli katkıların yanı sıra, Eschenmoser'in yapay nükleik asitlerin sentetik yolları üstüne çalışmalarıyla Hayatın Kaynağı üstüne öncü çalışmaları vardır. 2009'da emekli olmadan önce ETH Zürih ve La Jolla, Kaliforniya'daki Scripps Araştırma Enstitüsü'ne bağlı Skaggs Kimyasal Biyoloji Enstitüsü'nde profesörlükleri vardı. Ayrıca Chicago Üniversitesi, Cambridge Üniversitesi ve Harvard Üniversitesi'nde misafir profesör olarak çalıştı.

Polimer kimyası, polimerlerin ve makromoleküllerin kimyasal sentezine, yapısına ve kimyasal ve fiziksel özelliklerine odaklanan bir kimya alt disiplinidir. Polimer kimyasında kullanılan ilkeler ve yöntemler, organik kimya, analitik kimya ve fiziksel kimya gibi çok çeşitli diğer kimya alt disiplinleri aracılığıyla da uygulanabilir. Pek çok malzeme tamamen inorganik metaller ve seramiklerden DNA ve diğer biyolojik moleküllere kadar polimerik yapılara sahiptir, ancak polimer kimyası tipik olarak sentetik, organik bileşimler bağlamında anılır. Sentetik polimerler, genellikle plastik ve kauçuk olarak adlandırılan, günlük kullanımdaki ticari malzemeler ve ürünlerde her yerde bulunur ve kompozit malzemelerin ana bileşenleridir. Polimer kimyası, her ikisi de polimer fiziği ve polimer mühendisliğini kapsayacak şekilde tanımlanabilen daha geniş polimer bilimi veya hatta nanoteknoloji alanlarına da dahil edilebilir.

Genellikle polimer malzemeleri tasarlayan, analiz eden ve değiştiren bir mühendislik alanıdır. Polimer mühendisliği, petrokimya endüstrisi, polimerizasyon, polimerlerin yapısı ve karakterizasyonu, polimerlerin özellikleri, polimerlerin birleştirilmesi ve işlenmesi ve ana polimerlerin tanımı, yapı özellik ilişkileri ve uygulamalarının yönlerini kapsar.

Yeşil kompozitler ya da biyokompozitler olarak da adlandırılır; yenilenebilir kaynaklardan veya biyolojik maddelerden kaynaklanan hem takviyelerden hem de polimer matris fazından oluşan farklı türde biyo-kompozit malzemeler olarak tanımlanmaktadır. Yeşil kompozitler, çok çeşitli takviye elemanı ve matris malzemelerin kullanımına uygun, iyi mukavemet ve boşluklu yapılarından dolayı iyi ses yalıtım özelliğine sahip, kolayca işlenebilen ve yeni üretim teknikleri gerektirmeyen, mikro ya da nano seviyede çalışılabilen, geri dönüştürülebilir, yenilenebilir, sürdürülebilir doğa dostu malzemelerdir. Yakın geçmişte kendini dünyaya kısa bir sürede tanıtan kompozit malzemeler uzay-hava sistemleri, otomotiv, spor eşyaları gibi birçok gündelik alanlarda vazgeçilemez hale gelmiştir. Genellikle kompozit malzemeler, çeşitli biçimlerde tasarlanabilir olmalarına karşın çoğunlukla epoksi, polipropilen, polietilen vs. bir polimer matrise cam, karbon, aramid veya ultra yüksek moleküler ağırlıklı polietilen liflerin takviyesiyle meydana gelmektedirler. Kompozit malzeme kullanımı artmasının avantajı olmasının yanında oluşacak malzeme için tüketilen atıklar sorun oluşturmaktadır. Ayrıca kompozit malzemeler iki farklı malzemeden meydana geliyor olması geri dönüşümünü zorlaştırmaktadır.

<span class="mw-page-title-main">Biyometal</span>

Biyometal veya Biyopolimerler, canlı organizmaların hücreleri tarafından üretilen doğal polimerlerdir. Biyopolimerler, daha büyük moleküller oluşturmak üzere kovalent olarak bağlanmış monomerik birimlerden oluşmaktadır. Kullanılan monomerlere ve oluşan biyopolimerin yapısına göre sınıflandırılan üç ana biyopolimer sınıfı vardır: polinükleotitler, polipeptitler ve polisakkaritler' dir. RNA ve DNA gibi polinükleotitler, 13 veya daha fazla nükleotit monomerinden oluşan uzun polimerlerdir. Polipeptitler ve proteinler, amino asitlerin polimerleridir ve bazı önemli örnekler arasında kolajen, aktin ve fibrin bulunmaktadır. Polisakaritler, doğrusal veya dallı polimerik karbonhidratlardır ve örnekler arasında nişasta, selüloz ve aljinat bulunmaktadır. Biyopolimerlerin diğer örnekleri arasında doğal kauçuklar, süberin ve lignin, kütin ve kutan ve melanin bulunmaktadır. Biyopolimerlerin gıda endüstrisi, imalat, paketleme ve biyomedikal mühendisliği gibi çeşitli uygulamaları vardır.