İçeriğe atla

Biyofizik

Kinesin mikrotübülün üzerinde yürümek için nano boyuttaki protein domain dinamiklerini kullanır.

Biyofizik, biyolojik olayları incelemek için fizikte geleneksel olarak kullanılan yaklaşım ve yöntemleri uygulayan disiplinler arası bir bilimdir.[1][2][3] Biyofizik, moleküler seviyeden organizma ve popülasyon seviyesine kadar tüm biyolojik organizasyon ölçeklerini kapsar. Biyofiziksel araştırmalar biyokimya, moleküler biyoloji, fizikokimya, fizyoloji, nanoteknoloji, biyomühendislik, hesaplamalı biyoloji, biyomekanik, gelişim biyolojisi ve sistem biyolojisi ile önemli ölçüde örtüşmektedir.

Biyofizik terimi ilk kez Karl Pearson tarafından 1892'de kullanıldı.[4] Biyofizik çok çeşitli olan ilgi alanı içinde, sinir iletisini sağlayan elektrik ya da kas kasılmasını sağlayan mekanik kuvvet gibi fiziksel etkenlere bağlı olan biyolojik işlevleri, canlıların ışık, ses ya da iyonlaştırıcı ışınımlar gibi fiziksel etkenlerle etkileşimini ve yüzme, uçma, yürüme gibi yer değiştirme ya da iletişim yoluyla çevreleriyle kurdukları ilişkileri inceler. Bu çalışmalarda çok gelişmiş yöntemlerden ve araçlardan yararlanır. Moleküler Biyofizikte kullanılan en yaygın yöntemler arasında X ışını kırınımı ve X ışını kristalografisi, Nükleer magnetik rezonans spektroskopisi, soğurma ve floresans spektroskopi ve ultrasantrifüjle çökeltme yer almaktadır. Hayvan ve bitki makromoleküllerinin yapısı ve özellikleri bu yöntemlerle kesin bir biçimde tanımlanabilmiştir.

Genel bakış

Moleküler biyofizik, biyokimya ve moleküler biyolojidekilere benzer biyolojik soruları ele alır ve biyomoleküler fenomenlerin fiziksel temellerini bulmaya çalışır. Bu alandaki bilim adamları, DNA, RNA ve protein biyosentezi arasındaki etkileşimleri ve bu etkileşimlerin nasıl düzenlendiğini içeren hücrenin çeşitli sistemleri arasındaki etkileşimleri anlamakla ilgili araştırmalar yürütmektedir. Bu soruları cevaplamak için çok çeşitli teknikler kullanılmaktadır.

Ribozom, protein dinamiklerini kullanan biyolojik bir makinedir

Floresan görüntüleme teknikleri, elektron mikroskobu, X-ışını kristalografisi, NMR spektroskopisi, atomik kuvvet mikroskopisi (AFM), x-ışınları ve nötronlar ile küçük açılı saçılım (SAXS / SANS) çoğu zaman biyolojik önemi olan yapıları görselleştirmek için kullanılır. Protein dinamiği, nötron spin eko spektroskopisi ile gözlenebilir. Yapıdaki konformasyonel değişiklik, çift polarizasyon interferometrisi, dairesel dikroizm, SAXS ve SANS gibi teknikler kullanılarak ölçülebilir. Optik cımbız veya AFM kullanılarak moleküllerin doğrudan manipülasyonu, kuvvetlerin ve mesafelerin nano ölçekte olduğu biyolojik olayları izlemek için de kullanılabilir. Moleküler biyofizikçiler genellikle karmaşık biyolojik olayları, istatistiksel mekanik, termodinamik ve kimyasal kinetik gibi bilimler yoluyla açıklanabilen etkileşen varlıkların sistemleri olarak görürler. Çok çeşitli disiplinlerden bilgi ve deneysel teknikler kullanarak, biyofizikçiler genellikle tek tek moleküllerin veya molekül komplekslerinin yapılarını ve etkileşimlerini doğrudan gözlemleyebilir, modelleyebilir ve hatta manipüle edebilirler.

Yapısal biyoloji veya enzim kinetiği gibi geleneksel (yani moleküler ve hücresel) biyofiziksel konulara ek olarak, modern biyofizik, biyoelektronikten hem deneysel hem de teorik araçları içeren kuantum biyolojisine kadar olağanüstü geniş bir araştırma yelpazesini kapsamaktadır. Biyofizikçilerin fizik, matematik ve istatistikten türetilen modelleri ve deneysel teknikleri, dokular, organlar,[5] popülasyonlar [6] ve ekosistemler gibi daha büyük sistemlere uygulaması gittikçe yaygınlaşmaktadır. Biyofiziksel modeller, tek nöronlardaki elektrik iletiminin yanı sıra hem dokuda hem de tüm beyinde nöral devre analizinde yaygın olarak kullanılmaktadır.

Ayrıca bakınız

Kaynakça

  1. ^ "Biophysics | science". Encyclopedia Britannica. 22 Nisan 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 26 Temmuz 2018. 
  2. ^ "Q&A: What is biophysics?". BMC Biology. Cilt 9. Mart 2011. s. 13. 
  3. ^ "the definition of biophysics". www.dictionary.com. 22 Nisan 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 26 Temmuz 2018. 
  4. ^ The Grammar of Science. 24 Aralık 2019 tarihinde kaynağından arşivlendi. 
  5. ^ Sahai (Temmuz 2018). "Mesoscale physical principles of collective cell organization". Nature Physics. 14 (7). ss. 671-682. 
  6. ^ Popkin (7 Ocak 2016). "The physics of life". Nature News. 529 (7584). ss. 16-18. 

Kaynakça

Dış bağlantılar

İlgili Araştırma Makaleleri

Zooloji hayvanların bilimsel olarak incelenmesidir. Çalışmaları, hem yaşayan hem de soyu tükenmiş tüm hayvanların yapısını, embriyolojisini, sınıflandırmasını, alışkanlıklarını ve dağılımını ve ekosistemleriyle nasıl etkileşime girdiklerini içerir. Zooloji, biyolojinin ana dallarından biridir. Terim, Antik Yunanca ζῷον, zōion ('hayvan') ve λόγος, logos kelimelerinden türetilmiştir.

<span class="mw-page-title-main">Moleküler biyoloji</span> Canlı yapılarını moleküler düzeyde inceleyen bilim dalı.

Moleküler biyoloji, canlılardaki olayları moleküler seviyede inceleyen biyoloji dalıdır.

<span class="mw-page-title-main">Francis Crick</span> İngiliz fizikçi, moleküler biyolog; DNAnın yapısının ortak kaşifi

Francis Harry Compton Crick, İngiliz moleküler biyolog, fizikçi ve nörobilimci. 1953'te James D. Watson ve Maurice Wilkins ile beraber DNA molekülünün yapısını keşfederek 1962 Nobel Fizyoloji veya Tıp Ödülü'nü paylaşmıştır.

<span class="mw-page-title-main">Spektroskopi</span>

Spektroskopi elektromanyetik radyasyon ile maddenin etkileşiminin radyasyonun dalga boyu veya frekansının bir fonksiyonu olarak ortaya çıkan elektromanyetik spektrumu (tayf) ölçen ve yorumlayan bir çalışma alanıdır. Başka bir deyişle, elektromanyetik spektrumun tüm bantlarında görünür ışıktan kaynaklı olarak meydana gelen bir kesin renk çalışmasıdır.

<span class="mw-page-title-main">Moleküler motor</span>

Moleküler motorlar canlı organizmalarda hareketi sağlayan biyolojik moleküler makinalardır. Genel olarak, bir motor enerji kullanıp onu hareket veya mekanik işe dönüştürür. Örneğin, çoğu protein-temelli moleküler motor ATP'nin hizdrolizi ile açığa çıkan serbet enerjisini kullanıp onu mekanik işe dönüştürür. Enerjetik verimlilik açısından bu tür motorlar hâlen mevcut insan yapımı motorlardan üstündürler. Moleküler motorlarla makroskopik motorlar arasındaki önemli bir fark, moleküler motorların termal banyo içinde çalışmalarıdır, bu ortamda termal gürültüden kaynaklanan fluktuasyonlar önemli düzeydedir.

Biyomoleküler yapı biyomoleküllerin yapısıdır. Bu moleküllerin yapısı genelde birincil, ikincil, üçüncül ve dördüncül yapı olarak ayrılır. Bu yapının iskeleti, molekül içinde birbirine hidrojen bağları ile bağlanmış ikincil yapı elemanları tarafından oluşturulur. Bunun sonucunda protein ve nükleik asit yapı bölgeleri oluşur.

<span class="mw-page-title-main">Moleküler dinamik</span>

Moleküler dinamik (MD), atomların ve moleküllerin fiziksel hareketlerini incelemek için bir bilgisayar simülasyon yöntemidir. Atomların ve moleküllerin sabit bir süre boyunca etkileşime girmesine izin verilir ve bu da sistemin dinamik evrimi hakkında bilgi verir. En yaygın versiyonda, atomların ve moleküllerin yörüngeleri, parçacıklar ve bunların potansiyel enerjileri arasındaki kuvvetlerin çoğu zaman atomlararası potansiyeller veya moleküler mekanik kuvvet alanları kullanılarak hesaplandığı, etkileşen parçacıkların bir sistemi için Newton'un hareket denklemlerinin sayısal olarak çözülmesiyle belirlenir. Metot ilk olarak 1950'lerin sonunda teorik fizik alanında geliştirildi, ancak günümüzde çoğunlukla kimyasal fizik, malzeme bilimi ve biyomoleküllerin modellenmesinde uygulanmaktadır.

<span class="mw-page-title-main">Yapısal biyoinformatik</span>

Yapısal biyoinformatik bir biyoinformatik dalı. Protein, RNA ve DNA gibi biyoloji makromolekülleriin 3D yapılarının tahmini ve analizi ile ilgilenir.

<span class="mw-page-title-main">Jacques Dubochet</span> İsviçre kimyager, biyofiziksel

Jacques Dubochet, İsviçreli emekli biyofizikçi. Heidelberg, Almanya'daki Avrupa Moleküler Biyoloji Laboratuvarı'nda araştırmacı olarak çalışmıştır ve şu anda İsviçre'nin Lozan Üniversitesi'nde biyofizik dalında onursal profesörlük yapmaktadır.

<span class="mw-page-title-main">Richard Henderson</span> İngiliz biyokimyacı, moleküler biyolog

Richard Henderson, İskoç moleküler biyolog ve biyofizikçi, ayrıca biyomolekül, elektron mikroskobunda öncü bilim insanı. Henderson, 2017 yılında Jacques Dubochet ve Joachim Frank ile birlikte Nobel Kimya Ödülü almıştır.

<span class="mw-page-title-main">Moleküler biyofizik</span>

Moleküler biyofizik, fizik, kimya, mühendislik, matematik ve biyoloji kavramlarını birleştiren, hızla gelişen disiplinler arası bir araştırma alanıdır. Bu alan biyomoleküler sistemleri anlamaya çalışır ve biyolojik işlevselliği moleküler yapı, yapısal organizasyon ve dinamik davranışı açısından açıklamayı hedefler. Bu disiplin moleküler kuvvetlerin ölçümü, moleküler bağlantılar, allosterik etkileşimler, Brown hareketi ve kablo teorisi gibi konuları kapsar. Biyofizik Anahattı başlığında ek çalışma alanları bulunabilir. Disiplin, küçük yaşam yapılarını görüntüleme ve manipüle edebilen özel ekipman ve prosedürlerin yanı sıra yeni deneysel yaklaşımların geliştirilmesini gerektirmiştir.

<span class="mw-page-title-main">Faz yüzey bilimi</span>

Faz yüzey bilimi, katı - sıvı arayüzleri, katı - gaz arayüzleri, katı - vakum arayüzleri ve sıvı - gaz arayüzleri dahil olmak üzere iki fazın arayüzünde meydana gelen fiziksel ve kimyasal olayların incelenmesidir. Yüzey kimyası ve yüzey fiziği alanlarını içerir. İlgili bazı pratik uygulamalar yüzey mühendisliği olarak sınıflandırılmaktadır. Bilim heterojen kataliz, yarı iletken cihaz üretimi, yakıt hücreleri, kendi kendine monte edilen tek tabakalar ve yapıştırıcılar gibi kavramları kapsar. Faz yüzey bilimi arayüz ve kolloid bilimi ile yakından ilgilidir. Arayüzey kimyası ve fizik her ikisi için de ortak konulardır. Yöntemler farklı. Buna ek olarak, arayüz ve kolloid bilimleri, arayüzlerin özelliklerinden dolayı heterojen sistemlerde ortaya çıkan makroskopik olayları inceler.

<span class="mw-page-title-main">Hesaplamalı biyoloji</span> biyolojik, davranışsal ve sosyal sistemlerin incelenmesinde veri-analitik ve teorik yöntemler, matematiksel modelleme ve hesaplamalı simülasyon teknikleri

Hesaplamalı biyoloji veya bilişimsel biyoloji, biyolojik, ekolojik, davranışsal ve sosyal sistemlerin araştırılmasında veri analitik ve teorik yöntemlerin, matematiksel modelleme ve hesaplamalı simülasyon tekniklerinin geliştirilmesini ve uygulanmasını içerir. Disiplinlerarası bir alandır ve de farklı disiplinleri kucaklar. Temelinde biyoloji, uygulamalı matematik, istatistik, biyokimya, kimya, biyofizik, moleküler biyoloji, genetik, genomik, bilgisayar bilimi ve evrim yer almaktadır.

<span class="mw-page-title-main">Yapısal biyoloji</span>

Yapısal biyoloji, biyolojinin özellikle amino asitlerden yapılmış olan proteinler, nükleotitlerden yapılmış RNA ve DNA gibi nükleik asitler ve lipitlerden oluşmuş membranlar olmak üzere biyolojik makromoleküllerin yapılarını ve uzamsal dizilişlerini inceleyen bir dalıdır. Yapısal biyoloji asıl olarak biyofizik yöntemleri ile makromoleküllerin atom düzeyinde üç boyutlu yapılarının belirlenmesi, yapısal değişikliklerinin temel prensipleri, moleküler hareketlerin analizi ve bu yapıların dinamiği ile ilgilenir. Makromoleküller hücrelerin hemen hemen tüm işlevlerini yerine getirir ve bunu da yapabilmek için belirli üç boyutlu şekillere girerler. Moleküllerin "üçüncül yapı"sı olarak adlandırılan bu yapılar her molekülün temel bileşimi ya da "birincil yapı"ları ile karmaşık bir şekilde bağlantılıdır.

<span class="mw-page-title-main">Matematiksel ve teorik biyoloji</span>

Matematiksel ve teorik biyoloji, biyolojinin bilimsel teorileri kanıtlamak için gerekli deneyleri yapmakla uğraşan deneysel biyoloji dalının aksine biyolojik sistemlerin yapılarının, gelişimlerinin ve davranışlarının altında yatan ilkeleri araştırmak için yaşayan organizmaların teorik analizlerini, matematiksel modellerini ve soyutlamalarını kullanan bir dalıdır. Bu alan aynı zamanda matematiksel yanını vurgulamak için matematiksel biyoloji ya da biyomatematik ya da biyolojik yanını vurgulamak için ise teorik biyoloji olarak da adlandırılır. Teorik biyolojinin odak noktası daha çok biyolojinin teorik ilkelerinin geliştirilmesi iken matematiksel biyoloji biyolojik sistemlerin incelenmesinde matematiği kullanır ama her iki terim de bazen birbirinin yerine kullanılabilmektedir.

George Feher, Kaliforniya Üniversitesi, San Diego'da çalışan Amerikalı bir biyofizikçiydi.

David Mervyn Blow FRS FInstP, İngiliz biyofizikçidir. En çok on binlerce biyolojik molekülün moleküler yapılarını belirlemek için kullanılan bir teknik olan X-ışını kristalografisinin geliştirmesi ile tanınıyordu. Bu teknik, ilaç endüstrisi için son derece önemliydi.

Harden M. McConnell, Amerikalı bilim insanı. Son 50 yılın önde gelen fiziksel kimyagerlerinden biridir. Çalışmaları bugün bilim içindeki birçok alanın temelini oluşturmuştur. Ulusal Bilim Madalyası, Wolf Ödülü ve Ulusal Bilim Akademisi'ne seçilmesi de dâhil olmak üzere aldığı birçok ödülle uluslararası alanda tanınmıştır.

Barry H. Honig, doğumlu biyolojik makromoleküllerin yapısını ve işlevini analiz etmek için teorik yöntemler ve bilgisayar yazılımı geliştiren Amerikalı bir biyokimyacı, moleküler biyofizikçi ve hesaplamalı biyofizikçidir.

Protein Data Bank (PDB),büyük biyolojik moleküllerin, özellikle proteinler ve nükleik asitlerin üç boyutlu yapısal verilerini içeren bir veri tabanı olarak çalışır. Genellikle X-ışını kristalografisi, NMR spektroskopisi gibi tekniklerle elde edilen deneysel verileri, atomların yeri ve konumunu içeren PDB dosya formatında barındırır. Kriyo-elektron mikroskopisi yöntemi de veri elde etmek için kullanılan yöntemlerden biri olarak öne çıkar. PDBe, PDBj, RCSB ve BMRB gibi üye kuruluşların internet siteleri aracılığıyla herkese açık ve erişilebilirdir. PDB'nin yönetimi Dünya Protein Data Bank (wwPDB) tarafından denetlenmektedir.