İçeriğe atla

Birleşme özelliği (ikili işlemler)

Birleşme özelliği
İlişkisel işlemleri temsil eden görsel bir grafik;
TürYasa, yer değiştirme kuralı
Alan
Sembolik gösterim
  1. Temel cebirde
  2. Önermeler mantığında

Matematikte birleşmeli özellik, bir küme üzerine tanımlanmış ikili işlemlerin ayırt edici özelliklerinden biridir. Bu özelliği sağlayan ikili işlemlere birleşmeli işlem denir. Açık olarak bu özellik, (xy)z = x(yz) demektedir, yani üç elemanı "çarparken" işlem sırasının önemli olmadığını söylemektedir, bir başka deyişle birleşmeli özellikte işlem yaparken paranteze gerek olmadığını söylemektedir. Örneğin tam sayılar kümesi Z üzerine tanımlanmış olan toplama işlemi birleşmeli bir işlemdir ancak çıkarma işlemi birleşmeli değildir, çünkü eşitliği her için sağlanmasına karşın, eşitliği için sağlanmaz.

Üç elemanı için geçerli olan bu özellik elbet tane eleman için de geçerlidir. Örneğin .

, X kümesi üzerine bir ikili işlem ise ve her için ise, ikili işleminin birleşmeli işlem olduğu söylenir. Toplama, çarpma gibi cebirde rastlanan işlemlerin birçoğu birleşme özelliğini sağlar. Ancak çıkarma işlemi (tamsayılar kümesi üzerinde) birleşmeli işlem değildir çünkü sayısı eğer z, 0'a eşit değilse 'ye eşit değildir.

Birleşmeli özelliği sağlayan yapılarda işlemler yapılırken parantez gerekmez. Bu yüzden ve yerine, yazılır. Aynı şey dört eleman çarpılırken de geçerlidir: Birleşmeli özelliğini sağlayan bir işlem söz konusu olduğunda, , , , gibi çarpımlar parantezsiz olarak olarak yazılır.

Birleşmeli özelliği sağlamayan yapılarda elemanını tanımlamak bile sorun olabilir, nitekim bu eleman olarak tanımlanabileceği gibi olarak da tanımlanabilir. için çok daha fazla seçenek olabilir.

Matematiğin en önemli işlemlerinden biri fonksiyonların birleşmeli işlemidir. Eğer X bir kümeyse, Fonk(X, X), X kümesinden X kümesine giden fonksiyonlar kümesi olsun. Eğer Fonk(X, X) ise, gene X kümesinden X kümesine giden ve adına "f ile g fonksiyonlarının bileşkesi" denilen f o g fonksiyonunu şöyle tanımlayalım: Her için, (f o g)(x) = f(g(x)) olsun. Bu, Fonk(X, X) kümesi üzerine bir işlemdir. Bu işlemin birleşmeli özelliği vardır.

Cebirde ender olsa da birleşmeli özelliğini sağlamayan işlemler önemli olabilir. Örneğin Lie cebirlerindeki köşeli parantez işlemi birleşmeli değildir. Öte yandan Lie cebirlerinde köşeli parantez işlemi, Jacobi eşitliği sayesinde, birazcık olsun birleşme özelliğini sağlar.

Kümelerde birleşme işareti

Kümelerde birleşme işareti "U" şeklindedir. İki ya da daha çok kümenin elemanlarını bir araya getirme işlemidir. A ve B iki küme ise bu iki kümenin birleşimi A U B şeklinde gösterilir.

örneğin: A = { 1, 3, 5, 7 }, B = { 3, a, b } ise A U B kümesini liste yöntemi ile gösterelim; A U B={1,3,5,7,a,b}

Örnekler

.

Birleşmesiz

Kümelerdeki ikili işlemlerde birleşme özelliğini sağlamıyorsa buna birleşmesiz denir.

Bazı işlemler birleşmesizdir.

  • Çıkarma
  • Bölme
  • Üslü sayı

Sonsuz toplamlar birleşmesizdir.

Birleşmesiz yapılar konusu klasik cebirin yapısındaki farklılıklardan meydana gelmiştir. Birleşmesiz cebir Lie cebir konusunda daha büyük bir alana sahiptir artık. Birleşmeli kuralı Jacobi özdeşliği ile yer değiştirmiştir. Lie alcebrası sonsuz küçük dönüşümlerin temelini değiştirip matematikte her yerde bulunan bir özellik haline getirmiştir.

Kayan Nokta Hesaplamasının Birleşmesiz Olanı

Matematikte toplama ve çarpma birleşmelidir. Bunun aksine hatalar yuvarlandığında ve farklı boyuttaki değerler birleştiğinde bilgisayar biliminde kayan noktanın toplanması ve çarpılması birleşmesizdir.[1] Örnek verilecek olunursa; 4 bit mantissa ile kayan nokta gösterimi:
(1.0002×20 + 1.0002×20) + 1.0002×24 = 1.0002×21 + 1.0002×24 = 1.0012×24
1.0002×20 + (1.0002×20 + 1.0002×24) = 1.0002×21 + 1.0002×24 = 1.0002×24 Birçok bilgisayar 53 ve 24 bitlik mantissa ile çalışmasına rağmen,[2] yuvarlama hatasında önemli bir kaynaktır ve Kahan toplama algoritması ile bu hatalar en küçük hale getirilir. Özellikle paralel hesaplamalarda önemli bir problemdir.[3][4]

Birleşmesiz İşlemlerdeki Notasyon

Genelde parantezler birleşmesiz durumlardaki işlem sırasını göstermek için kullanılır. Ancak matematikçiler bir işlem sırası belirlemişlerdir bazı birleşmesiz işlemler için. Kısaca parantezlerden kurtulmak için yapmışlardır. Sol birleşmeli soldan sağa giderken:

Sağ birleşmeli sağdan sola gider:

Ancak bunların ikisi de meydana geldiğinde Sol birleşmeli işlemlerde:

  • Gerçek sayıların çıkarması ve bölünmesi:
  • Fonksiyonlarda:

Sağ birleşmeli işlemlerde:

  • Üslü sayılarda:
Sol birleşmeli işlemin burada kullanılmamasındaki sebep daha az kullanışlı olmasıdır

Birleşmesiz işlemlerde bazı işlemlerin sırası aşağıdaki gibidir.

  • Üç vektörün çapraz çarpımı alınırken:
  • Gerçel sayıların ortalama değeri alınırken:

Ayrıca bakınız

Kaynakça

  1. ^ Knuth, Donald, The Art of Computer Programming, Volume 3, section 4.2.2
  2. ^ IEEE Computer Society (29 Ağustos 2008). "IEEE Standard for Floating-Point Arithmetic". IEEE. doi:10.1109/IEEESTD.2008.4610935. ISBN 978-0-7381-5753-5. IEEE Std 754-2008. 
  3. ^ Villa, Oreste; Chavarría-mir, Daniel; Gurumoorthi, Vidhya; Márquez, Andrés; Krishnamoorthy, Sriram, Effects of Floating-Point non-Associativity on Numerical Computations on Massively Multithreaded Systems (PDF), 15 Şubat 2013 tarihinde kaynağından (PDF) arşivlendi, erişim tarihi: 8 Nisan 2014 
  4. ^ Goldberg, David, "What Every Computer Scientist Should Know About Floating Point Arithmetic" (PDF), ACM Computing Surveys, 23 (1), ss. 5-48, 15 Şubat 2013 tarihinde kaynağından (PDF) arşivlendi, erişim tarihi: 8 Nisan 2014 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Tam sayı</span> sıfırın sağında bulunan sayılar büyükken solunda bulunan sayılar küçüktür

Tam sayılar, sayılar kümesinde yer alan sıfır (0), pozitif yönde yer alan doğal sayılar ve bunların negatif değerlerinden oluşan negatif sayılardan oluşan sayı kümesidir.

<span class="mw-page-title-main">Grup teorisi</span> simetrileri inceleyen matematik dalı

Grup teorisi veya Grup kuramı, simetrileri inceleyen matematik dalıdır. Simetri kuramı olarak da adlandırılabilir. Bir nesnenin simetrileri ile kast edilen, nesneye uygulandığında nesneye hiçbir etki olmamış gibi sonuç veren dönüşümlerdir. Her nesnenin en az bir simetrisi vardır: hiçbir şey yapmadan olduğu gibi bırakma dönüşümü. Bahsettiğimiz dönüşümlerin tersleri de vardır ve aradığımız özellikleri sağlarlar. Son olarak da dönüşümlerin art arda yapılması, birleşimli bir işlemdir. Bu üç koşula sırasıyla birim elemana sahip olma, elemenların tersi olma ve grup işleminin birleşmeli olması denir. Bu kavramların matematikte soyutlanması, üzerinde tersinebilir ve bileşme özelliğine sahip ikili bir işlemin tanımlı olduğu kümeler ile yapılır. Daha detaylı açıklamak gerekirse, grup nesnesi bir küme G ve onun üzerinde tanımlı bir işleminden oluşur. Bu operasyonun aşağıdaki şartları sağlaması gereklidir:

Vektör hesaplamada, divergence bir vektör alanının kaynak ya da batma noktasından uzaktaki bir noktada genliğini ölçen işleçtir; yani bir vektör alanının uzaksaması işaretli bir sayıdır. Örneğin ısındıkça genişleyen havanın hızını gösteren bir vektör alanının uzaksaması pozitif olacaktır, çünkü hava genişlemektedir. Eğer hava soğuyup daralıyorsa uzaksama negatif olacaktır. Bu özel örnekte uzaksama yoğunluğun değişiminin ölçüsü olarak düşünülebilir.

<span class="mw-page-title-main">Soyut cebir</span> Matematiğin bir alanı

Soyut cebir veya soyut matematik, matematiğin bir alanı olup, cebirsel yapılar üzerinde çalışır. Cebirsel yapılar, elemanları üzerinde belirli işlemlerin uygulandığı kümelerdir ve gruplar, halkalar, alanlar, modüller, vektör uzayları, kafesler ve alan üzerindeki cebirler içerir. Soyut cebir terimi, 20. yüzyılın başlarında temel cebirden ayırmak amacıyla türetilmiştir. Soyut cebir ileri matematik için temel hale geldikçe basitçe "cebir" olarak adlandırılırken, "soyut cebir" terimi pedagoji dışında nadiren kullanılır.

Evrensel cebir, matematiğin bir dalı olup bütün cebirsel yapılara ortak olan özellikleri inceleyen bilimin adıdır.

<span class="mw-page-title-main">Rasyonel sayılar</span>

Rasyonel sayılar, iki tam sayı arasındaki oranı temsil eden, bir pay p ve sıfırdan farklı bir payda q olmak üzere, bir bölme işlemi veya kesir formunda ifade edilebilen sayıları tanımlar. Örneğin, rasyonel bir sayı olarak kabul edilir, bu kapsamda her tam sayı da rasyonel sayılar kategorisindedir. Rasyonel sayılar kümesi, çoğunlukla kalın harf biçimindeki Q veya karatahta vurgusu kullanılarak şeklinde ifade edilir.

<span class="mw-page-title-main">Halka</span>

Halka, matematikte cebirin temel yapılarından biridir ve soyut cebirde tam sayıların soyutlamasıdır. Bu yapıyı işleyen dala halka kuramı denir. Halkalar diğer bir temel yapı olan grupların üzerine inşa edilir. Her halka, aynı zamanda değişmeli bir gruptur, ama bir halkadan daha fazla özelliği sağlaması istenir. Örneğin halkada grup işlemine ek olarak ikinci bir işlem daha vardır. Halkalara örnek olarak tam sayılar, modülo n sayılar, polinomlar ya da karmaşık sayılar verilebilir.

<span class="mw-page-title-main">Çarpma</span>

Çarpma, temel aritmetik işlemlerden biridir. Sayılarda çarpma, çarpılan sayının çarpan sayı kadar adedinin toplamının alınması işlemidir.

Matematikte karmaşık sayı, bir gerçel bir de sanal kısımdan oluşan bir nesnedir. a ve b sayıları gerçek olursa karmaşık sayılar şu biçimde gösterilirler:

Eğer bir kümeyse, kümesinden kümesine giden bir fonksiyona kümesi üzerine ikili işlem denir. İkili işlemi olarak gösterirsek, yerine genellikle , , ya da daha yaygın olarak yazmak bir gelenek halini almıştır. Burada önemli olan, her için, işlemin sonucu olan elemanının yine kümesinde olmasıdır, yoksa ikili bir işlemden söz edemeyiz. Örneğin, ise, işlemi bu küme üzerinde ikili bir işlem değildir. Örneğin, bir doğal sayı değildir. Öte yandan olarak tanımlanan işlem doğal sayılar kümesi üzerine ikili bir işlemdir.

Bileşke fonksiyon, matematikte bir işlevdir.

Cisim, halka ve grup gibi soyut bir cebirsel yapıdır. Kabaca, elemanları arasında toplama, çıkarma, çarpma ve bölme yapılabilen ve bu işlemlerde sayılardan alışık olduğumuz temel aritmetik kurallarının geçerli olduğu bir küme olarak tanımlanabilir.

Bağıntıda yansıma, simetri ve geçişme özelliği varsa bu bağıntı denklik bağıntısıdır.

Açısal hız, bir objenin birim zamandaki açısal olarak yer değiştirme miktarına verilen isimdir. Açısal hız vektörel olup bir cismin bir eksen üzerindeki dönüş yönünü ve hızını verir. Açısal hızın SI birimi radyan/saniyedir, ancak başka birimlerde de ölçülebilir. Açısal hız genellikle omega sembolü ile gösterilir. Açısal hızın yönü genellikle dönüş düzlemine diktir ve sağ el kuralı ile bulunabilir.

<span class="mw-page-title-main">Tetrasyon</span>

Matematikte, tetrasyon, üslü sayıdan sonra gelen ilk aşırı işlecin tekrarlı üssüdür. Tetrasyonun İngilizce karşılığı olan tetration kelimesi ilk kez matematikçi Reuben Louis Goodstein tarafından, tetra- (dört) ve iteration (tekrar)dan türetilerek kullanılmaya başlandı. Tetrasyon çok büyük sayıların gösterimi için kullanıldı. Fakat birkaç pratik uygulaması vardır. Bu yüzden sadece saf matematik incelenir. Burada aşırı işlecin ilk dört örneğin gösteriliyor. Tekrasyon dördüncüsüdür:

  1. toplama
    Normal bilinen toplama işlemi.
  2. çarpma
    genellikle temel işlemlerden birini ifade eder. Fakat doğal sayılar gibi özel durumlar için kendine n kere eklenen a olabilir.
  3. üs alma
    a nın kendisi ile n kere çarpılması.
  4. tetrasyon
    a 'nın kendisiyle n kere üssünün alınması.

Tamlık bölgesi, halka ile cisim arasında yer alan bir cebirsel yapıdır. Bir tamlık bölgesi sıfır böleni içermeyen bir halkadır. Yani sıfırdan farklı iki elemanın çarpımı sıfırdan farklıdır; için

Örnekler

Soyut cebir ve mantıkta, ikili işlemlerin dağılma özelliği, temel cebirdeki dağılma kuralının genelleştirilmesidir.

Lineer cebirde, doğrusal dönüşümler matrislerle temsil edilebilir. 'den 'ye bir doğrusal dönüşüm olan , girdisi olan sütun vektör ve 'lik bir matrisi için,

<span class="mw-page-title-main">Bidördey</span>

Soyut cebirde, bidördeyler sayılarıdır. Klasik dördeylere benzese de sayıları reel sayılar değil karmaşık sayılar kümesinin elemanlarıdır. Bir başka deyişle, dördey grubu elemanları olan elemanlarının katsayıları reel sayılar kümesinin elemanları değil karmaşık sayılar kümesinin elemanlarıdır.

Matematikte, özellikle kategori teorisi ve homotopi teorisinde bir grupoid için grup kavramı birden fazla eşdeğer yolla açıklanabilir. Bir grupoid şu iki şekilde genelleştirilir: