İçeriğe atla

Birkhoff'un teoremi

Birkhoff'un teoremi, ABD'li matematikçi George David Birkhoff'un şu teoremlerinden biri kastedilmiş olabilir:

  • Birkhoff'un teoremi (rölativite)
  • Birkhoff'un teoremi (elektromanyetizma)
  • Birkhoff'un ergodik teoremi

Ayrıca oğlu Garrett Birkhoff'un adıyla bilinen şu teoremler de denmek istenmiş olabilir:

  • Birkhoff'un saklı alt grup problemi teoremi, homomorfizmanın kapalılık işlemiyle ilgilidir.
  • Birkhoff'un simgeleme teoremi dağılımlı kafeslerle ilgilidir.
  • Birkhoff'un teoremi (denklemsel mantık), sentaks ve semantik sonucun çakıştığını gösterir.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Pisagor teoremi</span> Öklid geometrisinde bir dik üçgenin üç kenarı arasındaki bağıntı

Pisagor teoremi veya Pisagor bağıntısı, Öklid geometrisinde üçgenin kenarları arasındaki temel ilişkiyi kuran ilk teoremlerden biridir. Teoreme gerçek hayattan örnek olarak telli çalgıları gösterilebilir; 'telin uzunluğu arttıkça titreşim artar' prensibine dayanır. Pisagor'un denklemi olarak da isimlendirilen bu teorem, a, b ve c kenarlarının arasındaki ilişkiyi şu şekilde açıklar:

Tersine matematik, belirli bir teoremi ispatlamak için gerekli olan en az sayıdaki aksiyomların belirlenmesiyle ilgili matematik dalıdır. Çoğunlukla taban (kurucu) aksiyomları zayıf olan matematiksel kuramlarda ortaya atılan birçok teoremin teoremi kanıtlamak için gerekli olan ek aksiyoma denk olduğu ortaya çıkmaktadır.

<span class="mw-page-title-main">Matematiksel ispat</span> ilgilenilen bir önermenin, belirli aksiyomlar esas alınarak, doğru olduğunu gösterme yöntemi

Matematiksel ispat, matematiksel bir ifade için türetilmiş varsayımların mantıksal olarak doğru olduğu sonucunu garantileyen, çıkarımsal bir argümandır. Argüman, teoremler gibi önceden oluşturulmuş diğer ifadeleri kullanabilir; lakin prensipte her delil, kabul edilen çıkarım kurallarıyla birlikte yalnızca aksiyom olarak bilinen belirli temel veya orijinal varsayımlar kullanılarak oluşturulabilir.

<span class="mw-page-title-main">Öklid geometrisi</span> Öklide atfedilen matematiksel-geometrik sistem

Öklid geometrisi, İskenderiyeli Yunan matematikçi Öklid’e atfedilen matematiksel bir sistemdir ve onun Elemanlar adlı geometri üzerine ders kitabında tarif edilmektedir. Öklid'in yöntemi, sezgisel olarak çekici küçük bir aksiyom seti varsaymaktan ve bu aksiyomlara dayanarak birçok başka önermeyi (teoremleri) çıkarmaktan ibarettir. Öklid'in sonuçlarının çoğu daha önceki matematikçiler tarafından ifade edilmiş olsa da, Öklid, bu önermelerin kapsamlı bir tümdengelimli ve mantıksal sisteme nasıl uyabileceğini gösteren ilk kişi oldu. Elemanlar, ilk aksiyomatik sistem ve resmi ispatın ilk örnekleri olarak ortaokulda (lise) hala öğretilen düzlem geometrisi ile başlar. Üç boyutlu katı geometrisi ile devam ediyor. Elemanlar’ın çoğu, geometrik dilde açıklanan, şimdi cebir ve sayı teorisi olarak adlandırılan şeyin sonuçlarını belirtir.

Karmaşık analizde, tam fonksiyon veya başka bir deyişle integral fonksiyonu, karmaşık düzlemin tümünde holomorf olan karmaşık değerli bir fonksiyondur. Tam fonksiyonların tipik örnekleri polinomlar, üstel fonksiyon ve bunların toplamları, çarpımları ve bileşkeleridir. Her tam fonksiyon tıkız kümeler üzerinde düzgün bir şekilde yakınsayan kuvvet serileri ile temsil edilebilir. Doğal logaritma ya da karekök fonksiyonu tam bir fonksiyona uzatılamaz.

Karmaşık analizde Charles Émile Picard'ın ismine atfedilen Picard teoremi analitik bir fonksiyonun görüntü kümesiyle ilişkin ayrı ayrı ama yine de birbirine bağlı iki teoremdir.

Gerçel analiz ya da bilinen diğer ismiyle reel analiz, matematiksel analizin bir dalıdır. Bu dal, gerçek sayılar ve bu sayılardan türetilen yapılarla ilgili temel kavramları ele alır. Ana konuları arasında diziler, seriler, limitler, süreklilik, türev, integral ve fonksiyon dizileri yer alır. Gerçek analizin incelenmesi, matematiğin diğer alanları için temel araçlar ve yöntemler sağlar.

<span class="mw-page-title-main">Menelaus teoremi</span> Bir üçgenin her bir kenar doğrusundan tepe noktası olmayan birer nokta olmak üzere üç noktanın, ancak ve ancak her üç kenar doğrusu üzerinde belirledikleri işaretli oranların çarpımı -1 ise eş doğrusal olduğunu belirten Öklid geometri

İskenderiyeli Menelaus'a izafe edilen Menelaus teoremi düzlemsel geometride üçgenler üzerine bir teoremdir. , ve noktalarından oluşan üçgeninde , ve doğruları üzerinde bulunan ve üçgenin köşelerinden ayrık , ve noktalarının aynı doğru üzerinde olabilmesi ancak ve ancak:

<span class="mw-page-title-main">Napoleon teoremi</span>

Napoleon teoremi bir üçgenin kenarlarına çizilen eşkenar üçgenlerin merkezlerinin yine bir eşkenar üçgen oluşturduğunu gösteren teoremdir.

<span class="mw-page-title-main">George David Birkhoff</span> Amerikalı matematikçi (1884 – 1944)

George David Birkhoff en çok, şu anda ergodik teorem olarak adlandırılan şeyle tanınan Amerikalı matematikçi. Birkhoff, döneminde Amerikan matematiğinin en önemli liderlerinden biriydi ve yaşadığı süre boyunca birçok kişi tarafından önde gelen Amerikalı bir matematikçi olarak kabul edildi.

<span class="mw-page-title-main">Garrett Birkhoff</span> Amerikalı matematikçi (1911 – 1996)

Garrett Birkhoff Amerikalı bir matematikçiydi. En çok kafes teorisindeki çalışmaları ile tanınır. Matematikçi George Birkhoff (1884-1944) babasıydı.

Matematikte bir sabit nokta teoremi, bir F fonksiyonunun, genel terimlerle ifade edilmiş belli koşullar altında en az bir sabit noktası olduğunu ifade eden bir sonuçtur. Bu tür sonuçlar matematikte en çok kullanılanlar arasındadır.

<span class="mw-page-title-main">Thales teoremi</span>

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

Vektör analizi ve modern haliyle diferansiyel geometride ''Stokes teoremi'' ya da güncel haliyle ''genelleştirilmiş Stokes teoremi'' veya ''Stokes-Cartan teoremi'' Vektör Analizi'nden çeşitli teoremleri hem basitleştiren hem de genelleştiren çokkatlılar üzerindeki diferansiyel formların integrasyonu ile ilgili önemli bir teoremdir. Klasik anlamı için Kelvin-Stokes teoremine bakılması gerekir. Modern anlamına 20. yüzyılın önemli matematikçilerinden Ellie Cartan ile kavuşmuştur. Yani teorem ismini İrlandalı matematikçi ve fizikçi George Gabriel Stokes ve modern haliyle Fransız matematikçi ve fizikçi Ellie Cartan'dan almaktadır. Modern anlamda Stokes teoremi bir diferansiyel form olan ω'nın bazı yönlendirilebilir Ω çokkatlısının sınırları üzerindeki integralinin Ω'nın tamamı üzerindeki dış türevi dω'nın integraline eşit olduğunu söyler. Yani;

Thales teoremi veya temel orantı teoremi olarak da bilinen kesişme teoremi, kesişen iki çizginin bir çift paralelle kesilmesi durumunda oluşturulan çeşitli çizgi parçalarının oranları hakkındaki temel geometride önemli bir teoremdir. Benzer üçgenlerdeki oranlarla ilgili teoreme eşdeğerdir. Geleneksel olarak Yunan matematikçi Thales'e atfedilir.

<span class="mw-page-title-main">Apollonius teoremi</span> Öklid geometrisinde bir teorem

Geometri'de, Apollonius teoremi, üçgenin bir kenarortay uzunluğunu kenarlarının uzunluklarıyla ilişkilendiren bir teoremdir.

<span class="mw-page-title-main">Menteşe teoremi</span> Öklid geometrisinde bir teorem

Geometride, menteşe teoremi, bir üçgenin iki kenarı başka bir üçgenin iki kenarına uyuyorsa ve birincinin iç açısının ikincinin iç açısından daha büyük olduğunda, ilk üçgenin üçüncü kenarının ikinci üçgenin üçüncü kenarından daha uzun olduğunu belirtir. Bu teorem aslında Öklid'in Elemanları Kitabının 24. önermesidir. Teorem şunları belirtir:

Dış açı teoremi, bir üçgenin bir dış açısının ölçüsünün, uzak iç açılarının ölçülerinden daha büyük olduğunu belirten Ökllid'in Elemanlar'ı Önerme 1.16'dır. Bu, mutlak geometride temel bir sonuçtur çünkü ispatı paralellik postülatına bağlı değildir.

Bu sayfa teoremlerin bir listesidir. Ayrıca bakınız:

<span class="mw-page-title-main">Geometrik ortalama teoremi</span> Dik üçgenler hakkında bir teorem

Dik üçgen yükseklik teoremi veya geometrik ortalama teoremi, bir dik üçgendeki hipotenüs üzerindeki yükseklik uzunluğu ile hipotenüs üzerinde oluşturduğu iki doğru parçası arasındaki ilişkiyi tanımlayan temel geometrinin bir sonucudur. İki doğru parçasının geometrik ortalamasının yüksekliğe eşit olduğunu belirtir.