İçeriğe atla

Birim vektör

Matematikte, uzunluğu 1 (birim uzunluğu) olan ve uzayda bir norma sahip olan vektöre birim vektör denir. Birim vektör genellikle ‘û‘ gibi şapkalı ve küçük harflerle ifade edilir. Normalize vektör veya versor olmayan bir sıfır vektörü u ile eş yönlü olan birim vektörü u

Mutlak u,u vektörünün normunu (veya uzunluğunu) verir. Bu normalize vektör bazen birim vektörün eş anlamı olarak da kullanılır. Bir kaynağın veya bir ilkenin elementleri birim vektör olmak üzere seçilebilir. Uzaydaki her vektör birim vektörün linear bileşenleri olarak yazılabilir. En çok rastlanılan kaynaklar Kartezyen, polar ve küresel koordinatlarıdır. Her biri, koordinat sisteminin simetrisine göre farklı birim vektörleri kullanır. Bu sistemler çok farklı içeriklere sahip oldukları için burada kullanıldıklarından daha farklı bir kullanıma rastalamak pek yaygın değildir. Tanım olarak, Öklid geometrisi’nde iki birim vektörün nokta çarpımı basitçe aralarındaki açının cosinüsüdür. Üç boyutlu Öklid geometrisi’nde ise, iki dikey birim vektörün çapraz çarpımı diğer bir birim vektöre eşittir.

Dikey koordinatlar

Kartezyen koordinatlar

Birim vektörler, Kartezyen koordinat sisteminin eksenlerini ifade etmek için de kullanılabilir. Örneğin, üç boyutlu x,y,z eksenlerinde eş yönlü birim vektörün Kartezyen koordinat sistemi;

Bazen Versor’un koordinat sistemi olarak da bahsedilir. Genellikle, standart birim vektör işaretlerinden() farklı olarak normal vektör işaretleri (i ya da) ile gösterilirler. Birçok yerde i,j i, j, k, ve( ve )3D Kartezyen koordinat sisteminin versorları olarak varsayılabilir. Ayrıca bu işaretler , , , or , hat, şapkalı veya şapkasız olarak kullanılır. Kaynaklarda özellikle i,j,k başka bir niceliğe sahip olan bir karışıklığa sebep olabilir (örneğin,i,j,k gibi içerik sembolleri bir takımın elementleri, sırası veya çeşitlilik dizisi olarak tanımlanabilir). Uzaydaki bir birim vektör i,j,k 'nın çizgisel kombinasyonları olarak, kartezyen sembolleri ile ifade edildiğinde, bu üç bileşen kosinüs fonksiyonun yönü olarak tanımlanabilir. Her bir bileşenin değeri ayrı ayrı vektörle birim vektörün arasında oluşturdukları açının kosinüsüne eşittir. Düz bir çizginin, çizginin bir kısmının, açısal eksenlerinin veya açısal eksenlerin bir parçasının tanımlamak için kullanılan yöntemlerden bir tanesidir.

Silindirik koordinatlar

Silindirsel simetri için uygun üç dikey birim vektör vardır. Bunlar; (ayrıca bunlar da kullanılabilir ya da ), noktanın simetri ekseninden olan uzaklığını gösterir. ,saat yönünü tersinde hareket ederse, hareket yönünün gözlemlenebildiğine karşılık gelmektedir. ,simetri ekseninin yönüne karşılık gelir. Bunlar kartezyenin temeli olan , , ile ilişkilendirilir.

=
=

ve ’nin fonksiyonları olduğunu belirtmek önemlidir ve sabit bir yönleri yoktur. Silindirik koordinatlarda türevleyerek ve integralini alarak, bu vektörleri çalıştırabiliriz. Daha eksiksiz bir açıklama için, Jacobian matrix'e bakınız. Fonksiyonun türevleri şunlardır;

Küresel koordinatlar

Küresel bir simetriye uygun birim vektörleri: , orjinden artan radyal uzunluğun yönü x-y düzleminde saat yönünün tersi yönde gelen pozitif x ekseni artmaktadır; ve , z ekseni yönündeki pozitif gelen açı artmaktadır. Bozulmayı, çakışıklığı en aza indirmek için, polar açı genellikle alınır. Sıklıkla ve gösterilen, küresel koordinatlarda yazılmış herhangi bir düzen üçlü bağlamına dikkat etmek özellikle önemlidir. Amerikan fizik kongresinde de kullanılmıştır. Bu azimutal açı yaparak silindir koordinatlar da bunun aynısı olarak tanımlanır. Kartezyen ilişkileri şunlardır:

Küresel birim vektörler hem hem ’a bağlıdır ve dolayısıyla beş tane sıfır olmayan türevleri vardır. Daha eksiksiz bir açıklama için Jakobien bakınız. Sıfır olmayan türevleri;

Genel birim vektörler

Fizik ve Geometri boyunca meydana gelen birim vektörlerin ortak genel temaları:

Birim vektör Terimleme Diyagram
Bir eğri çizgisine teğet vektör"200px" "200px"

Bir düzlemin içerdiği normal vektörü ve radyal pozisyon vektörü tarafından tanımlanan ve açısal teğeti dönme doğrultusu vektör denklemlerinin açısal hareketlerinin bulunması için gereklidir.

Radyal konum bileşeni ve açısal teğet bileşeni içeren bir yüzeye teğet normal düzlemi açısından

kutupsal koordinatlar;

Binormal tanjant vektör ve normal [1]
Bazı eksen /hattına paralel"200px"

Bir birim vektörü bir ana doğrultuda(kırmızı çizgi)paralel hizalanmış ve ona dik birim vektör herhangi bir radyal doğrultuda ana hattına göredir.

Bir radyal doğrultuda bir eksen/hattına dik
Bazı eksen/hattına bağlı mümkün açısal sapma "200px"

Akut sapma açısında φ birim vektörü (0 or π/2 rad dahil olmak üzere) göreceli bir yöne göre belirlenir.

Eğrisel koordinatlar

Genellikle, koordinat sistemi benzersiz bir vektör numarası kullanılarak belirtilebilir. Bağımsız birim vektörleri uzayın serbestlik derecesine eşittir. Sıradan 3 uzayı için; bu vektörler ifade edilebilir. Bu sistemi tanımlamak ve ortonormal olmak için her zaman uygun olan denklemler;

δij Kronecker delta’dır (i = j dir ve sıfırdan farklıdır) ve Levi-Civita symbolüdür (permütasyon düzenlerinin bir tanesidir ijk' ve eksi sıralı permütasyonu kji.

Kaynakça

  1. ^ M. R. Spiegel, S. Lipschutz, D. Spellman (2009). Vector Analysis (Schaum's Outlines Series) (2. bas.). Mc Graw Hill. ISBN 978-0-07-161545-7. 

İlgili Araştırma Makaleleri

Laplasyen , skaler bir alanının gradyanı alınarak elde edilen vektörün diverjansıdır. Fizikteki birçok diferansiyel denklem laplasyen içerir.

<span class="mw-page-title-main">Küresel koordinat sistemi</span>

Küresel koordinat sistemi, üç boyutlu uzayda nokta belirtmenin bir yoludur.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">Kutupsal koordinat sistemi</span>

Matematikte kutupsal koordinat sistemi veya polar koordinat sistemi, noktaların birer açı ve Kartezyen koordinat sistemindeki orijinin eşdeğeri olup "kutup" olarak bilinen bir merkez noktaya olan uzaklıklar ile tanımlandığı, iki boyutlu bir koordinat sistemidir. Kutupsal koordinat sistemi, matematik, fizik, mühendislik, denizcilik, robot teknolojisi gibi birçok alanda kullanılır. Bu sistem, iki nokta arasındaki ilişkinin açı ve uzaklık ile daha kolay ifade edilebildiği durumlar için özellikle kullanışlıdır. Kartezyen koordinat sisteminde, böyle bir ilişki ancak trigonometrik formüller ile bulunabilir. Kutupsal denklemler, çoğu eğri tipi için en kolay, bazıları içinse yegâne tanımlama yöntemidir.

<span class="mw-page-title-main">Mie saçılması</span>

Mie saçılması veya Mie teorisi, düzlem bir elektromanyetik dalganın (ışık) homojen bir küre tarafından saçılmasını ifade eder. Maxwell denklemlerinin Lorenz–Mie–Debye çözümü olarak da bilinmektedir. Denklemlerin çözümü sonsuz bir vektör küresel harmonik serisi şeklinde yazılır. Saçılma ismini fizikçi Gustav Mie'den almaktadır; analitik çözümü ilk kez 1908 yılında yayınlanmıştır.

Matematikte karmaşık sayı, bir gerçel bir de sanal kısımdan oluşan bir nesnedir. a ve b sayıları gerçek olursa karmaşık sayılar şu biçimde gösterilirler:

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

<span class="mw-page-title-main">Akım fonksiyonu</span>

Akım Fonksiyonu, eksen simetrisi ile üç boyutta olduğu kadar iki boyutta sıkıştırılamaz akışlar için tanımlanır. Akış hızı bileşenleri, skaler akış fonksiyonunun türevleri olarak ifade edilebilir. Akım fonksiyonu, kararlı akıştaki partiküllerin yörüngelerini gösteren akım çizgileri, çıkış çizgileri ve yörüngeyi çizmek için kullanılabilir. İki boyutlu Lagrange akım fonksiyonu, 1781'de Joseph Louis Lagrange tarafından tanıtıldı. Stokes akım fonksiyonu, eksenel simetrik üç boyutlu akış içindir ve adını George Gabriel Stokes'tan almıştır.

Burada, en yaygın olarak kullanılan koordinat dönüşümü bazılarının bir listesi verilmiştir. Kısmi türevler alınırken çarpımın türevi gibi davranıldığı akıldan çıkarılmamalıdır. Bir örnek olarak fonksiyonunda üç çarpım vardır

Değişken değiştirme, İntegral, çarpanlara ayırma, denklemler, üslü denklemler, trigonometri ve diferansiyel denklemler başta olmak üzere matematiğin her alanında işlemi basitleştirmek için kullanılan matematiksel bir yöntemdir.

<span class="mw-page-title-main">Silindirik ve küresel koordinatlarda vektör alanı</span>

NOT: Bu sayfa küresel koordinatların fizik gösterimi içindir, z ekseni arasındaki açıdır.ve yarıçap vektörü söz konusu noktaya orijinden bağlantılıdır, bu açısı x-y düzlemi ve x ekseni ile vektör yarıçapının izdüşümü arası açıdır. Diğer bazı tanımları da kullanılıyor ve çok dikkatli farklı kaynaklardan karşılaştırarak alınmalıdır.

<span class="mw-page-title-main">Küresel harmonikler</span>

Matematikte, küresel harmonikler Laplace denkleminin çözüm kümesinin açısal kısmıdır. Küresel koordinatların bir sistemi içinde küre yüzeyinde tanımlanır, Fourier serisi ise çember üzerinde tanımlanır. Laplace'ın küresel harmonikleri Pierre Simon de Laplace tarafından ilk 1782 yılında tanıtılan bir ortogonal sistemin küresel harmonik formlarının özel bir kümesidir. Küresel harmoniklerden birkaçının kökleri sağda gösterimlenmiştir. Küresel harmonikler pek çok yerde teorik önem taşımaktadır ve özellikle atomik yörünge elektron konfigürasyonları, yerçekimi alanları, geoitleri ve gezegen ve yıldızların manyetik alanlarının temsili ve kozmik mikrodalga arka plan radyasyonu karakterizasyonu hesaplanmasında kullanılan pratik uygulamaları vardır. Küresel harmonikler 3D Bilgisayar grafiklerinde, dolaylı aydınlatma ve 3D şekillerin tanınması gibi konularda geniş bir yelpazede özel bir rol oynamaktadır.

Bu bir Küresel harmonikler ortonormalize tablosudur ve Bu Condon-Shortley fazı l = 10 dereceye kadar sağlanır.Bazen bu formüllerin "Kartezyen" yorumu verilir.Bu varsayım x, y, z ve r Kartezyen-e-küresel koordinat dönüşümü yoluyla ve ye ilişkindir:

Fizikte,düzlem dalga açılımı küresel dalgaların bir toplamı olarak bir düzlem dalgayı ifade eder,

Foton polarizasyonu klasik polarize sinüsoidal düzlem elektromanyetik dalgasının kuantum mekaniksel açıklamasıdır. Bireysel foton özdurumları ya sağ ya da sol dairesel polarizasyona sahiptir. Süperpozisyon özdurumu içinde olan bir foton lineer, dairesel veya eliptik polarizasyona sahip olabilir.

Matematiksel fizikte, hareket denklemi, fiziksel sistemin davranışını, sistem hareketinin zamanı ve fonksiyonu olarak tanımlar. Daha detaya girmek gerekirse; hareket denklemi, matematiksel fonksiyonların kümesini "devinimsel değişkenler" cinsinden izah eder. Normal olarak konumlar, koordinat ve zaman kullanılır ama diğer değişkenler de kullanılabilir: momentum bileşenleri ve zaman gibi. En genel seçim genelleştirilmiş koordinatlardır ve bu koordinatlar fiziksel sistemin karakteristiğinin herhangi bir uygun değişkeni olabilirler. Klasik mekanikte fonksiyonlar öklid uzayında tanımlanmıştır ama görelilikte öklid uzayı, eğilmiş uzay ile tanımlanmıştır. Eğer sistemin dinamiği biliniyor ise denklemler dinamiğin hareketini izah eden diferansiyel denklemlerin çözümleri olacaktır.

<span class="mw-page-title-main">Kepler yörüngesi</span> üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklayan kavram

Gök mekaniği olarak, Kepler yörüngesi üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklar.. Kepler yörüngesi yalnızca nokta iki cismin nokta benzeri yerçekimsel çekimlerini dikkate alır, atmosfer sürüklemesi, güneş radyasyonu baskısı, dairesel olmayan cisim merkezi ve bunun gibi bir takım şeylerin diğer cisimlerle girdiği çekim ilişkileri nedeniyle ihmal eder. Böylece Kepler problemi olarak bilinen iki-cisim probleminin, özel durumlara bir çözüm olarak atfedilir. Klasik mekaniğin bir teorisi olarak, aynı zamanda genel görelilik etkilerini dikkate almaz. Kepler yörüngeleri çeşitli şekillerde altı yörünge unsurları içine parametrize edilebilir.

Matematik ve fizikte Elwin Bruno Christoffel'in adına atfedilen Christoffel sembolleri eğri uzaylardaki metrik farkı düzenler.Daha basit bir biçimde anlatmaya çalışırsak bir vektörü gösterdiğimiz kartezyen koordinat sistemi gibi düz koordinatlarda vektörün bileşenlerini temsil eden baz vektörler kendi eksenlerine dik olduğu için türevleri sıfıra eşittir. Fakat eğri bir uzayda baz vektörler de değişir yani türevlenir. İşte bu türev işlemi Yunan alfabesinden harfi ile temsil edilmektedir. Christoffel sembollerinin fizikte birçok uygulaması vardır. Bunlardan en önemlisi Einstein alan denklemlerinde kullanılmasıdır.

Bu madde Vektör Analizi'ndeki önemli özdeşlikleri içermektedir.

<span class="mw-page-title-main">Parametrik denklem</span>

Matematikte, bir parametrik denklem, bir grup niceliği parametreler olarak adlandırılan bir veya daha fazla bağımsız değişkenin fonksiyonları olarak tanımlar. Parametrik denklemler genellikle bir eğri veya yüzey gibi geometrik bir nesneyi oluşturan noktaların koordinatlarını ifade etmek için kullanılır ve sırasıyla parametrik eğri ve parametrik yüzey olarak adlandırılır. Bu gibi durumlarda, denklemler, toplu olarak nesnenin parametrik temsili veya parametrik sistem, veya parametrelendirilmesi olarak adlandırılır.