İçeriğe atla

Birim hiperbol

birim hiperbolü mavi, eşleniği yeşil ve asimptotu kırmızı renktedir.

Geometride, Kartezyen düzleminde formülünü sağlayan (x,y) noktalar kümesine birim hiperbol denir. Belirsiz dikey gruplar çalışmasında, birim hiperbol bir alternatif radial uzunluk için bir temel oluşturur.

Oysa birim çember merkezini çevreleyen,düzlemde bunu tamamlayacak konjuge hiperbolü birim hiperbol gerektirir. Hiperbol çiftleri asimptotları y = x ve y = −x olarak paylaşır. Birim hiperbolün eşleniği kullanıldığında alternatif radyal uzunluk ; Birim hiperbol yönelimi, ölçeği ve konumuyla dikdörtgen hiperbolünün özel bir durumudur. Aslında, aykırılığı ' ye eşittir. Birim hiperbol analitik geometri amacıyla yer değiştirmiş olan çember gibi farklı uygulamalarda bulunabilir. Göze çarpan bir örnek de sözde Öklid uzayı olarak,uzay zamanının tasviridir. Birim hiperbolün asimptotları bir ışık konisi oluştururlar. Ayrıca, Gregoire de Saint-Vincent tarafından yönetilen hiperbolik sektörler alanına dikkat etmek gerekirse, bu alanlarda modern parametrelere ve logaritma fonksiyonuna yol açar. Eşlenik hiperbollerin ve hiperbolik açıların kavramları anlaşıldığı zaman, birim çemberin etrafına kurulan klasik karmaşık sayılar, birim hiperbol etrafında numaraları değiştirilebilir.

Asimptotlar

Genel olarak asimptot çizgileri bir eğriye doğru birleştiği söylenebilir. Cebirsel geometride ve cebirsel eğriler teorisinde asimptot için farklı bir yaklaşım vardır. Eğri ilk olarak homojen koordinatlar kullanılarak projektif düzlemi yorumlar. Sonra, asimptotlar sonsuzda bir noktada tanjantın izdüşüm eğrisi olur. Bu nedenle, yakınsama ve kavram mesafesini yakalamaya ihtiyaç duyulmaz. Bilinen bir sistem olan (x, y, z) sonsuz doğrultusunda z=0 denklemi tarafından karar verilen homojen koordinatlardır. Örneğin ; C.G.GİBSON'ın yazdığına göre ;

Standart dikdörtgen hiperbolü için ve R2 de izdüşüm eğrisine karşılık gelen fonksiyon; F = x^2 - y^2 - z^2’dur. Z =0 noktalarında P = (1 : 1 : 0) ve Q = (1 : −1 : 0).

Minkowski diyagramı

Minkowski diyagramı uzamsal yönü tek bir boyutta kısıtlı olan bir uzay düzleminde çizilir.

  • 30 cm uzunluğunda ve birimleri nanosaniye veya
  • Astronomik birim ve 8dk 20saniye veya aralıklı
  • Işık yılı ve yıllar

Koordinat ölçeklerinin her biri foton olaylarının bağlantıları boyunca eğimin artı ve eksi köşegenleri ile sonuçlanır. Hermann Minkowski diyagramını, görelelik dönüşümlerini tanımlamak için beş element oluşturur; birim hiperbol, onun eşlenik hiperbolü, hiperbolün eksenleri,birim hiperbolün esneklik çapı.Referans çerçevesi eksenleri ile düzlem bir dinlenme anlamına gelir. Bir hiperbolün eni hızlı bir hareket içinde bir referans çerçevesini temsil eder. a; tanh a = y/x ve (x,y) birim hiperbol üzerindeki son noktanın çapını verir. Eşleniğin çapı hızlı a'ya tekabül eden eşzamanlı mekânsal alt düzlemi temsil eder. Bu makalede birim hiperbolü bir kalibrasyon hiperbolüdür. Yaygın olarak, görecelik çalışmasında dikey ekseni ile hiperbol birincil olarak hesaplanır:

zamanın ok işareti figürün altından üstüne doğru gider-Richard Feynman tarafından bir kongrede kabul edilen Feynman’ın ünlü diyagramlarıdır. Boşluk zaman ekseni dik düzlemler tarafından temsil edilmektedir. Ortada eşsiz bir durum bulunmaktadır.

Parametreleştirme

birim hiperbol dalları &alpha’ ya bağlı noktalarında (cosh α, sinh α) ve (−cosh α, −sinh α) hiperbolik açı parametresi

Birim hiperbolü parametreleştirmek için bir yol hiperbol ile başlar,xy = 1 ile parametrelendirilen üstel fonksiyonu ;

Bu hiperbol, matrıxe sahip doğrusal bir eşleşme tarafından birim hiperbole dönüşür.

t olan bu parametre hiperbolik açıdır ve bu hiperbolik fonksiyonun tanımıdır. Dinamiğin elementlerinde birim hiperbolün parametreleştirilmesinin erken bir tanımı vardır W.K. Clifford tarafından 1878 de ortaya atılmıştır. Clifford bir hiperbolde yarı harmonik hareketi aşağıdaki bilgilerle açıklar; Eliptik harmonik harekete :The motion bazı benzetmeler vardır… İvme   bu nedenle, merkezden uzaklığı genellikle orantılıdır ama yönettiği merkezinden uzaktadır. Belirli bir koni olarak,hiperbol bir koninin ek noktaları tarafından parametreleştirilmiş olabilir. Aşağıdaki tanımlar Rus analistler tarafından verilmiştir. Koni üzerinde tespit edilen sabit bir E noktası. E ye doğru çizilen düz bir çizgi üzerinde bir nokta düşünün koninin kesişimleri AB olan,ikinci kez kesişen A ve B noktalarının toplamıdır. Hiperbol için x^2 - y^2 = 1</math> sabit noktası E = (1,0) noktalarının toplamı ve nokta parametrelerinin altında ve bu eklenme parametre t ‘nin eklenmesinden gelir.

Karmaşık düzlem cebir

Mademki birim çember karmaşık sayılarla ilişkili, birim çember ise j 2 = +1 olduğu yerde z = x + y j yi içeren ayrık karmaşık sayı düzleminin bir anahtarıdır. j'nin düzlem üzerindeki hareketini koordinatlar arasında değiş tokuş edebilmesi için, jz = y + x j bu formülü kullanabiliriz. Özellikle, bu hareket eşleniği ve birim hiperbol arasında karşılıklı değiş tokuş yapar ve ayrıca hiperbollerin eşlenik çaplarının çiftleri arasında karşılıklı değiş tokuş olur. Hiperbolik açı parametresi a,noktaların içerdiği birim hiperbol

j = (0,1) olduğunda.

Birim hiperbolün sağ kolu pozitif tam sayıya karşılık gelir. Aslında bu kol j ekseninde rol oynayan üstel eşin bir resmidir. Bu yüzden ;

Bu kol çarpmanın altında bir koldur. Çember grubunun aksine, bu birim hiperbol grubu sıkı ve etkin değildir .Sıradan karmaşık düzlemlere benzer olarak bir nokta köşegenler üzerinde değildir, hiperbolün parametreleştirilmesinin ve alternatif radyal uzunluğun kullanıldığı polar bir ayrışmaya sahiptir.

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Konikler</span> bir huniyi ve düzlemi kesiştirince oluşan eğri

Konik kesit, eliptik veya dairesel bir çift taraflı koninin, düzlemle kesitinden meydana gelen eğriler. Bunlar, çember, elips, parabol ve hiperboldür.

<span class="mw-page-title-main">Trigonometrik fonksiyonlar</span>

Trigonometrik fonksiyonlar, matematikte bir açının işlevi olarak geçen fonksiyonlardır. Geometride üçgenleri incelerken ve periyodik olarak tekrarlanan olayları incelerken sıklıkla kullanılırlar. Genel olarak bir açısı belirli dik üçgenlerde herhangi iki kenarın oranı olarak belirtilirler, ancak birim çemberdeki belirli doğru parçalarının uzunlukları olarak da tanımlanabilirler. Daha çağdaş tanımlarda sonsuz seriler veya belirli bir türevsel denklemin çözümü olarak geçerler.

<span class="mw-page-title-main">Kutupsal koordinat sistemi</span>

Matematikte kutupsal koordinat sistemi veya polar koordinat sistemi, noktaların birer açı ve Kartezyen koordinat sistemindeki orijinin eşdeğeri olup "kutup" olarak bilinen bir merkez noktaya olan uzaklıklar ile tanımlandığı, iki boyutlu bir koordinat sistemidir. Kutupsal koordinat sistemi, matematik, fizik, mühendislik, denizcilik, robot teknolojisi gibi birçok alanda kullanılır. Bu sistem, iki nokta arasındaki ilişkinin açı ve uzaklık ile daha kolay ifade edilebildiği durumlar için özellikle kullanışlıdır. Kartezyen koordinat sisteminde, böyle bir ilişki ancak trigonometrik formüller ile bulunabilir. Kutupsal denklemler, çoğu eğri tipi için en kolay, bazıları içinse yegâne tanımlama yöntemidir.

<span class="mw-page-title-main">Yarıçap</span> merkezinden çevresine bir daire veya küre içinde bölüm veya yüzeyi ile uzunluğu

Yarıçap, bir daire veya kürenin özeğinin (merkezinin) çemberine olan mesafesidir. Çapın yarısına eşittir.

<span class="mw-page-title-main">Hiperbolik sayılar</span>

Gerçel sayılarda olmayan ve karesi 1 olan bir sayının kümeye katılmasıyla üretilen kümeye hiperbolik sayılar kümesi denir. Tıpkı karmaşık sayılarda olduğu gibi, hiperbolik sayılar şeklinde yazılabilen sayılardır, ancak karmaşık sayılardan tek farkı hiperbolik birim denilen sayının

<span class="mw-page-title-main">Hiperbolik spiral</span>

Hiperbolik spiral, kutupsal koordinat sisteminde

<span class="mw-page-title-main">Karmaşık düzlem</span>

Matematikte karmaşık düzlem, gerçel eksen ve ona dik olan sanal eksen tarafından oluşturulmuş, karmaşık sayıların geometrik bir gösterimidir. Karmaşık sayının gerçel kısmının x-ekseni boyuncaki yer değiştirmeyle, sanal kısmının ise y-eksenindeki yer değiştirmeyle temsil edildiği değiştirilmiş bir Kartezyen düzlem olarak düşünülebilir.

Cebirsel geometri, matematiğin bir dalıdır. Adından anlaşılabileceği gibi, soyut cebirin, özellikle değişmeli cebirin yöntemleri ile geometrinin dili ve problemlerini bir araya getirir. Çağdaş matematik içerisinde merkezi bir rol üstlenmesinin yanında, karmaşık analiz, topoloji, sayılar kuramı gibi matematiğin diğer dallarıyla yakın ilişkisi vardır.

Hiperbolik düzlemin dönüşüm grubu, genel Möbius grubunun alt grubu olup ile gösterilir. Üst yarı düzlemi koruyan bu grup Riemann küresi üzerinde tanımlıdır. nin etkisi altında hiperbolik doğrular yine hiperbolik doğrulara giderken, herhangi iki eğri arasındaki açının mutlak değerinin, hiperbolik uzunluk ve uzaklığın korunması grubun karakteristik özelliklerinden bazılarıdır. Bu özelliklerden önemli bir sonuca, hiperbolik düzlemin dönüşüm grubuyla hiperbolik yarı düzlemin izometri grubunun eşyapılı olduğuna, varmak mümkündür.

<span class="mw-page-title-main">Hiperbolik fonksiyon</span>

Matematikte, hiperbolik fonksiyonlar sıradan trigonometrik fonksiyonların analogudur. Temel hiperbolik fonksiyonlar hiperbolik sinüs "sinh", hiperbolik kosinüs "cosh", bunlardan türetilen hiperbolik tanjant "tanh" ve benzer fonksiyonlardır. Ters hiperbolik fonksiyonlar alan hiperbolik sinüsü "arsinh" ve benzeri fonksiyonlardır.

Paramanyetik bir malzemede, malzemenin mıknatıslanması genel olarak uygulanan manyetik alanla orantılıdır. Fakat eğer malzeme ısıtılırsa, bu oran düşer: Belirli bir sıcaklığa kadar, mıknatıslanma sıcaklıkla ters orantılıdır. Bu kavram “Curie Yasası” tarafından kapsanmaktadır:

<span class="mw-page-title-main">Kepler yörüngesi</span> üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklayan kavram

Gök mekaniği olarak, Kepler yörüngesi üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklar.. Kepler yörüngesi yalnızca nokta iki cismin nokta benzeri yerçekimsel çekimlerini dikkate alır, atmosfer sürüklemesi, güneş radyasyonu baskısı, dairesel olmayan cisim merkezi ve bunun gibi bir takım şeylerin diğer cisimlerle girdiği çekim ilişkileri nedeniyle ihmal eder. Böylece Kepler problemi olarak bilinen iki-cisim probleminin, özel durumlara bir çözüm olarak atfedilir. Klasik mekaniğin bir teorisi olarak, aynı zamanda genel görelilik etkilerini dikkate almaz. Kepler yörüngeleri çeşitli şekillerde altı yörünge unsurları içine parametrize edilebilir.

Hiperbol bir konik kesiti türü. Diğer üç konik kesit türü gibi - parabol, elips ve çember - bir koni ve bir düzlemin kesişimi ile oluşan bir eğridir.

<span class="mw-page-title-main">Smith abağı</span> Grafik türü

Smith abağı veya Smith diyagramı, radyo ve mikrodalga frekanslarındaki iletim hatlarının tasarımı ve empedans eşlemesinde kullanılan bir grafiktir. Elektrik-elektronik ve haberleşme mühendisleri tarafından kullanılan bu abak Phillip H. Smith (1905–1987) tarafından icat edilmiştir. Smith abağı aynı anda empedans, admitans, yansıma ile saçılma katsayıları, kazanç konturu ve stabilite gibi çok sayıda parametreyi aynı anda gösterebilmektedir; bu yüksek frekans devreleri dışında mekanik titreşim analizinde de kullanılmasını sağlamıştır. Smith abağı genelde birim yarıçap içinde kullanılır; buna karşın abağın geri kalanı da elektronik osilatör ve stabilite analizinde kullanılmaktadır.

<span class="mw-page-title-main">Bézout teoremi</span> aciklama

Bézout teoremi, cebirsel geometride n değişkenli n polinomun ortak sıfırlarının sayısı ile ilgili bir ifadedir. Orijinal biçiminde teorem, genel olarak ortak sıfırların sayısının, polinomların derecelerinin çarpımına eşit olduğunu belirtir. Adını Fransız matematikçi Étienne Bézout'dan almıştır.

<span class="mw-page-title-main">Eş iç teğet çemberler teoremi</span>

Geometride, eş iç teğet çemberler teoremi bir Japon Sangaku'sundan türetilir ve aşağıdaki yapıya ilişkindir: belirli bir noktadan belirli bir çizgiye bir dizi ışın çizilir, öyle ki bitişik ışınlar ve taban çizgisi tarafından oluşturulan üçgenlerin iç teğet çemberleri eşittir. Çizimde eş mavi çemberler, açıklandığı gibi ışınlar arasındaki mesafeyi tanımlar.

<span class="mw-page-title-main">Parametrik denklem</span>

Matematikte, bir parametrik denklem, bir grup niceliği parametreler olarak adlandırılan bir veya daha fazla bağımsız değişkenin fonksiyonları olarak tanımlar. Parametrik denklemler genellikle bir eğri veya yüzey gibi geometrik bir nesneyi oluşturan noktaların koordinatlarını ifade etmek için kullanılır ve sırasıyla parametrik eğri ve parametrik yüzey olarak adlandırılır. Bu gibi durumlarda, denklemler, toplu olarak nesnenin parametrik temsili veya parametrik sistem, veya parametrelendirilmesi olarak adlandırılır.

<span class="mw-page-title-main">Düzlemsel eğri</span>

Matematikte, bir düzlem eğrisi veya düzlemsel eğri, bir düzlem içinde yer alan bir eğri olup söz konusu düzlem, bir Öklid düzlemi, bir afin düzlem veya bir projektif düzlem olabilir. En sık çalışılan durumlar, düzgün düzlem eğrileri ve cebirsel düzlem eğrisidir.

Eğrilerin diferansiyel geometrisinde, bir rulet veya yuvarlanma eğrisi, sikloidler, episikloidler, hiposikloidler, trokoidler, epitrokoidler, hipotrokoidler ve gereçleri (involütleri) genelleştiren bir eğri türüdür.

<span class="mw-page-title-main">Deltoid eğrisi</span> düzlem eğri, 3-çentikli hiposikloid

Geometride, triküspoid eğri veya Steiner eğrisi olarak da bilinen deltoid eğri, üç çentikten oluşan bir hiposikloiddir. Başka bir deyişle, bir çemberin çevresi üzerindeki bir noktanın, yarıçapının üç veya bir buçuk katı olan bir çemberin içinde kaymadan yuvarlanırken oluşturduğu yuvarlanma eğrisidir. Adını, benzediği büyük Yunanca delta (Δ) harfinden alır.