İçeriğe atla

Birim çember

Birim çember Matematikte, yarıçapı bir birim olan çembere birim çember denir. Çoğunlukla, özellikle trigonometride, Öklid düzlemine göre Kartezyen koordinat sisteminde, merkezi orijin üzerinde (0,0) olan ve yarıçapı bir birim olan çemberdir. n birim çember sıklıkla S1; olarak ifade edilir. Genellikle daha büyük boyutları ise birim küredir. (x,y) birim çember üzerinde bir nokta olduğunda, |x| ve |y|, dik olan ve hipotenüsü bir olan üçgenin diğer kenar uzunluklarıdır. Bu nedenle, Pisagor teoremine göre, x ve y bu denklemi karşılamaktadır.

Bir birim çember örneklemesidir. t değeri ölçülen açının değerine eşittir.

bir birim çemberin çizimi. değişkeni tolan bir açı ölçer.

Bütün x değerleri için x² = (−x)² olduğu için, birim çember üzerinde x ve y eksenlerinin herhangi bir noktası yine birim çember üzerindedir. Yalnızca birinci bölgedeki değil, birim çember üzerinde alınan bütün noktalar(x,y) bu denklemi sağlamaktadır. Ayrıca, diğer diğer birim çemberleri tanımlamak için farklı uzaklık kavramları da kullanılabilir; Rieman çemberi gibi. Fazladan örnekler için matematik standartlarındaki başlıklara bakabilirsiniz.

Karmaşık düzlemlerde

Birim çember, karmaşık sayıların temeli olarak düşünülebilir.

Bu formül Euler eşitliğidir.

Birim çemberde trigonometrik fonksiyonlar

Bir trigonometrik fonksiyon olan kosinüs and sinüs birim çember üzerinde tanımlanabilir. (x,y) birim çember üzerinde bir nokta olsun, orijin(0,0) ve (x,y) arasında oluşturulan çizgi pozitif x ekseninden bir t açısı oluşturur(saat yönünün tersinde döndüğünde pozitif yöndedir).

açısıθ olan bütün trigonometrik fonksiyonlar merkezi 0 olan birim çember geometrik olarak oluşturulabilir.
birim çemberde sinüs fonksiyonu ve grafiği)

Bu denklem x2 + y2 = 1 şu bağıntıyı verir:

Birim çember ayrıca sinüs ve kosinüs fonksiyonlarının periyodik fonksiyon olduklarını da gösterir,

Herhangi bir k tam sayısı için. Birim çember üzerinde kurulan üçgenler de trigonometrik fonksiyonların periyodikliğini göstermek için kullanılabilir. Birim çember üzerinde seçilen bir P(x,y) noktası originle QA yarıçapını oluşturmaktadır ve pozitif x ekseni kolunda bir t açısına 0 < t < π/2 sahiptir. Şimdi bir Q(x1,0) noktası düşünün, kesişimleri PQ OQ. Sonuç, bir dik üçgendir ΔOPQ ile ∠QOP = t. Çünkü, PQ y1 uzunluğuna, OQ x1 uzunluğuna ve QA’nın uzunluğu 1’dir, sin(t) = y1 and cos(t) = x1. Bu eşdeğerliğini kuran, OR yarıçaplı aynı açılı çember üzerinde bir nokta olan R(−x1,y1) x ekseninin negatif kolundadır. Şimdi bir nokta düşünün S (−x1,0) ve kesişimleri RS OS. Sonuç bir dik üçgendir ΔORS ile ∠SOR = t. Bu, bu nedenle görülebilir, çünkü ∠ROQ = π−t, R (cos(π−t)noktası, sin(π−t)) aynı yöntemle P (cos(t),sin(t))noktasıdır. Bunun sonucu olarak, (−x1,y1) ifadesi (cos(π−t),sin(π−t)) ifadesine ve (x1,y1) ifadesi de (cos(t),sin(t)) bu ifadeye denktir. Bu doğru sin(t) = sin(π−t) ve −cos(t) = cos(π−t). Bu benzer bir tarzla anlamlandırılabilir tan(π−t) = −tan(t) bu yüzden, tan(t) = y1/x1 and tan(π−t) = y1/(−x1). Yukarıdaki basit gösterim bir denklemde görülebilir sin(π/4) = sin(3π/4) = 1/sqrt(2). Dik bir üçgen, sinüs, kosinüs ve diğer trigonometrik fonksiyonlarla çalışıldığında yalnızca 0’dan büyük π/2’den küçük olan açılar anlamlandırılabilir. Ancak, birim çember ile tanımlanmış bu işlevler için ölçülen açısı 2π'den büyük olanlarda bile bu gerçek değerleri elde etmek mümkündür. Aslında, altı standart trigonometrik fonksiyonlar; sinüs, kosinüs, tanjant, kotanjant, sekant, kosecant gibi arkaik fonksiyonları versine ve exsecant, sağda gösterildiği gibi bir birim çemberin açısından geometrik olarak tanımlanabilir. Birim çember kullanarak,birçok açı için herhangi bir trigonometrik fonksiyon değeri, toplam ve fark formüllerini kullanarak bir hesap makinesi kullanmadan hesaplanabilir.

birim çember, belirli noktaların koordinatlarınıgösterir

Çember grubu

Kompleks sayılar Öklid düzlemi üzerindeki noktalar ile tespit edilebilir.Yani, a + bi sayısı (a, b) noktası olarak tanımlanabilir. Bu tanımlama altında, birim çember, çember grubu diye bilinen çarpmanın altında bir gruptur. Düzlemde çarpma &theta açısıyla saat yönünün tersinde bir dönme oluşturur. Bu grup matematikte ve bilimde önemli uygulamalara sahiptir.

Karmaşık düzlemlerde

kompleks dinamiklerde birim çember

Julia seti ve ayrık olmayan dinamik sistemi ile evrim fonksiyonu :

Bu bir birim çemberdir. Bu, yaygın olarak dinamik sistemlerin çalışmasında kullanılan çok basit bir durumdur.

Dış bağlantılar

Vikikitap
Vikikitap
Vikikitapta bu konu hakkında daha fazla bilgi var:

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Trigonometri</span> üçgenlerin açı ve kenar bağıntılarını konu alan geometri dalı

Trigonometri, üçgenlerin açıları ile kenarları arasındaki bağıntıları konu edinen matematik dalı. Trigonometri, sinüs ve kosinüs gibi trigonometrik işlevlerin (fonksiyon) üzerine kurulmuştur ve günümüzde fizik ve mühendislik alanlarında sıkça kullanılmaktadır.

<span class="mw-page-title-main">Sinüs (matematik)</span>

Matematikte sinüs, trigonometrik bir fonksiyon. Sin kısaltmasıyla ifade edilir.

<span class="mw-page-title-main">Kosinüs</span>

Kosinüs, trigonometrik bir fonksiyon. Cos kısaltmasıyla ifade edilir.

<span class="mw-page-title-main">Trigonometrik fonksiyonlar</span>

Trigonometrik fonksiyonlar, matematikte bir açının işlevi olarak geçen fonksiyonlardır. Geometride üçgenleri incelerken ve periyodik olarak tekrarlanan olayları incelerken sıklıkla kullanılırlar. Genel olarak bir açısı belirli dik üçgenlerde herhangi iki kenarın oranı olarak belirtilirler, ancak birim çemberdeki belirli doğru parçalarının uzunlukları olarak da tanımlanabilirler. Daha çağdaş tanımlarda sonsuz seriler veya belirli bir türevsel denklemin çözümü olarak geçerler.

<span class="mw-page-title-main">Kutupsal koordinat sistemi</span>

Matematikte kutupsal koordinat sistemi veya polar koordinat sistemi, noktaların birer açı ve Kartezyen koordinat sistemindeki orijinin eşdeğeri olup "kutup" olarak bilinen bir merkez noktaya olan uzaklıklar ile tanımlandığı, iki boyutlu bir koordinat sistemidir. Kutupsal koordinat sistemi, matematik, fizik, mühendislik, denizcilik, robot teknolojisi gibi birçok alanda kullanılır. Bu sistem, iki nokta arasındaki ilişkinin açı ve uzaklık ile daha kolay ifade edilebildiği durumlar için özellikle kullanışlıdır. Kartezyen koordinat sisteminde, böyle bir ilişki ancak trigonometrik formüller ile bulunabilir. Kutupsal denklemler, çoğu eğri tipi için en kolay, bazıları içinse yegâne tanımlama yöntemidir.

<span class="mw-page-title-main">Tanjant</span>

Tanjant, trigonometrik bir fonksiyondur. "tan" ile ifade edilir.

<span class="mw-page-title-main">Kotanjant</span>

Kotanjant, Trigonometrik bir fonksiyondur. şeklinde gösterilir. Analitik düzlemde yarıçapı 1 birim olan birim çember üzerinde açısının ordinatıyla apsisinin oranına denir. Dik üçgende ise açının komşu dik kenarının karşı dik kenarına oranıdır.

<span class="mw-page-title-main">Kardiyoit</span>

Matematikte kardiyoit veya yürek eğrisi, sabit bir çember üzerinde yuvarlanmakta olan aynı yarıçaplı ikinci bir çember üzerindeki herhangi bir noktanın izlediği eğridir. İsmi Yunanca kardia (kalp) ve eidos (şekil) kelimelerinin birleşiminden oluşur. Kalp (♥) şeklini anımsattığı için bu ismi almıştır. Kardiyoit ismini ilk kullanan, 18. yüzyıl İtalyan matematikçisi Johann Castillon olmuştur.

<span class="mw-page-title-main">Trigonometri tarihi</span>

Üçgenlerle ilgili erken çalışmalar, Mısır matematiği ve Babil matematiğinde MÖ 2. binyıla kadar izlenebilir. Trigonometri, Kushite matematiğinde de yaygındı. Trigonometrik fonksiyonların sistematik çalışması Helenistik matematikte başladı ve Helenistik astronominin bir parçası olarak Hindistan'a ulaştı. Hint astronomisinde trigonometrik fonksiyonların incelenmesi, özellikle sinüs fonksiyonunu keşfeden Aryabhata nedeniyle Gupta döneminde gelişti. Orta Çağ boyunca, trigonometri çalışmaları İslam matematiğinde El-Hârizmî ve Ebu'l-Vefâ el-Bûzcânî gibi matematikçiler tarafından sürdürüldü. Altı trigonometrik fonksiyonun da bilindiği İslam dünyasında trigonometri bağımsız bir disiplin haline geldi. Arapça ve Yunanca metinlerin tercümeleri trigonometrinin Latin Batı'da Regiomontanus ile birlikte Rönesans'tan itibaren bir konu olarak benimsenmesine yol açtı. Modern trigonometrinin gelişimi, 17. yüzyıl matematiği ile başlayan ve Leonhard Euler (1748) ile modern biçimine ulaşan Batı Aydınlanma Çağı boyunca değişti.

Periyodik fonksiyon, matematikte belli zaman aralığıyla kendini tekrar eden olguları ifade eden fonksiyonlara verilen isimdir. Tekrar etme süresi "periyot" olarak bilinir. Trigonometrik fonksiyonlar en tipik periyodik fonksiyonlardır. Bununla birlikte, diğer periyodik fonksiyonlar da trigonometrik fonksiyonların toplamı olarak ifade edilebilirler.

<span class="mw-page-title-main">Eğim</span>

Matematikte bir doğrunun eğimi ya da gradyanı o doğrunun dikliğini, eğimliliğini belirtir. Daha büyük eğim, daha dik bir doğru demektir.

<span class="mw-page-title-main">Kiriş (geometri)</span>

Geometride kiriş, bir çemberde, iki uç noktası da çemberin üstünde bulunan doğru parçası. Sekant, sekant doğrusu veya kesen, bir kirişin doğruya uzatılmış halidir. Diğer bir ifadesiyle, kiriş bir kesenin çember içinde kalan kısmıdır. Kiriş daha genel anlamıyla, herhangi bir eğrinin iki noktasını birleştiren doğru parçasıdır. Çemberin merkezinden geçen kiriş, aynı zamanda çemberdeki en uzun kiriş, o çemberin çapıdır.

Değişken değiştirme, İntegral, çarpanlara ayırma, denklemler, üslü denklemler, trigonometri ve diferansiyel denklemler başta olmak üzere matematiğin her alanında işlemi basitleştirmek için kullanılan matematiksel bir yöntemdir.

<span class="mw-page-title-main">Thales teoremi</span>

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

Trigonometride, trigonometrik özdeşlikler trigonometrik fonksiyonları içeren ve eşitliğin her iki tarafının da tanımlandığı değişkenlerin her değeri için doğru olan eşitliklerdir. Geometrik olarak, bunlar bir veya daha fazla açının belirli fonksiyonlarını içeren özdeşliklerdir. Bunlar üçgen özdeşliklerinden farklıdır, bunlar potansiyel olarak açıları içeren ama aynı zamanda kenar uzunluklarını veya bir üçgenin diğer uzunluklarını da içeren özdeşliklerdir.

Matematikte, trigonometrik fonksiyon tabloları bir dizi alanda yararlıdır. Küçük hesap makinelerinin varlığından önce, trigonometrik tablolar navigasyon, bilim ve mühendislik için gerekliydi. Matematiksel tabloların hesaplanması önemli bir çalışma alanıydı ve bu da ilk mekanik hesaplama cihazlarının geliştirilmesine yol açtı.

Matematikte, trigonometrik fonksiyonların değerleri gibi yaklaşık olarak veya gibi tam olarak ifade edilebilir. Trigonometrik tablolar birçok yaklaşık değer içerirken, belirli açılar için kesin değerler aritmetik işlemler ve karekök kombinasyonu ile ifade edilebilir. Bu şekilde ifade edilebilen trigonometrik değerlere sahip açılar tam olarak pergel ve düzeç ile inşa edilebilen açılardır ve bu değerlere inşa edilebilir sayılar denir.

Trigonometrik fonksiyonları tanımlamanın birkaç eşdeğer yolu vardır ve bunlar arasındaki trigonometrik özdeşliklerin kanıtları seçilen tanıma bağlıdır. En eski ve en temel tanımlar dik üçgenlerin geometrisine ve kenarları arasındaki orana dayanır. Bu makalede verilen kanıtlar bu tanımları kullanır ve dolayısıyla bir dik açıdan büyük olmayan negatif olmayan açılar için geçerlidir. Daha büyük ve negatif açılar için Trigonometrik fonksiyonlar bölümüne bakınız.

Trigonometrik fonksiyonların türevleri, trigonometrik bir fonksiyonun türevini yani bir değişkene göre değişim oranını bulmanın matematiksel sürecidir. Örneğin, sinüs fonksiyonunun türevi şeklinde yazılır, bu da sin(x) fonksiyonunun belirli bir açı x = a için değişim oranının o açının kosinüsü ile verildiği anlamına gelir.

<span class="mw-page-title-main">Pisagor trigonometrik özdeşliği</span> sin² θ + cos² θ = 1

Pisagor trigonometrik özdeşliği, daha basit ifadeyle Pisagor özdeşliği olarak da adlandırılır, Pisagor teoremini trigonometrik fonksiyonlar cinsinden ifade eden bir özdeşliktir. Açıların toplam formülleri ile birlikte, sinüs ve kosinüs fonksiyonları arasındaki temel bağıntılardan biridir. Özdeşlik şu şekildedir: