Olasılık yoğunluk fonksiyonu, olasılık kuramı ve bir olayın olma olasılığı dallarında bir rassal değişken olan X için reel sayılı sürekli fonksiyondur.
f ile ifade edilir ve şu özellikleri olması gereklidir:
Örnek uzayın analitik düzlemde ifade edilmesi. üzerinde pozitif veya sıfır değerleri alır;
üzerinde integral değeri bulunabilir;
koşuluna uyar, yani eğri altındaki tüm alan bire eşittir.
Xin a ve b değerleri arasındaki olasılık, yani şu ifade kullanılarak hesaplanır:
Yani olasılık değeri f(x) integralini f(x) fonksiyonunu X=a ve X=b değerleri arasında entegrasyonu ile elde edilir.
Örneğin: X rassal değişkeninin [4.3,7.8] aralığında olasılık şöyle bulunur:
Örnek uzay ve ayrık küme arasındaki bağlantı
Bu maddenin başlangıcında verilmiş olasılık fonksiyonu tanımın bir sürekli dağılım ile ilişkili değişkenin [a; b] aralığı ile ilişkili çift-değerli ayrık değişkenler seti kullanılarak yapılmıştır.
Diğer bazı aralıklı rassal değişkenleri temsili, Dirac delta fonksiyonu aracılığı ile olasılığın yoğunluğun bulunması suretiyle de yapılabilir. Örneğin, bir çift-değerli her biri ½ olasılığı olan -1 ve 1 değerli bir rassal değişken ele alınsın. Bu değişkenle ilişkili olasılık yoğunluğu şöyle verilir:
Daha genel olarak, eğer bir ayrık değişken reel sayılar arasından 'n' tane değişik değer alınsın; o halde bunlarla ilişkili olasılık fonksiyonu şudur:
Burada değişken ait değerler olur ve bu değerlerle ilişkili olasılıklardır.
Bu ifade bir ayrık değişken için istatistiksel özellikleri (örneğin ortalama, varyans, çarpıklık, basıklık) sürekli dağılım için geliştirilmiş formülleri kullanarak hesaba başlayarak sonuçların bulunmasını sağlar.
Matematiksel olmayan olasılık tanımı
Bir olasılık dağılımı için yoğunluk fonksiyonu ancak ve ancak yığmalı dağılım fonksiyonu F(x) mutlak süreklilik gösteriyorsa mümkündür. Bu halde F için nerede ise her yerde türev bulunabilir ve F için alınan birinci türev olasılık ile yoğunluk şöyle bulunur:
Eğer bir olasılık dağılım için yoğunluk bulunması mümkün ise rassal değişken için her bir nokta değer (a) için olasılık 0 olacaktır.
Her olasılık dağılımı için bir yoğunluk fonksiyonu bulunamaz. Başta ayrık rassal değişkenler için olasılık yoğunluk fonksiyonu yoktur. Hiçbir noktaya pozitif olasılık vermeyen, yani hiç aralık parçası olmayan Kantor dağılımı için de yoğunluk fonksiyonu bulunmaz.
Bir yığmalı dağılım fonksiyonunun türevi ile olasılık yoğunluk fonksiyonu arasındaki ilişkinin karmaşık matematik biçimlerden biraz aranmış açıklaması istatistiksel fizik dalında geliştirilmiştir ve bu genellikle olasılık yoğunluk fonksiyonu tanımı olarak kullanılabilir. Bu tanım şöyle yapılır:
dt sonsuz derece küçük bir sayı olarak alınsın. in (t, t + dt) aralığında bulunacağı ifadesine eşittir; yani
Moment, beklenen değer ve varyans
Sürekli X rassal değişkeni için ninci momenti E(Xn) gösterilip şu ifade ile verilir:
Beklenen değer o zaman birinci moment olup şöyle verilir:
Sürekli rassal değişkenler olan için, bu değişkenlerinin tümünü kapsayan rassal vektör için bir olasılık yoğunluk fonksiyonu tanımlamak mümkündür. Buna ortak olasılık yoğunluk fonksiyonu adı verilir. n değişkenli bu yoğunluk fonksiyonu matematik notasyon biçimleriyle şöyle tanımlanır. değişkenlerin değerleriyle tanımlanan n-boyutlu uzayda bulunan herhangi bir D sahası alınsın; bu değişken setinin D sahası içine düşen bir realizasyonun bulunacağının olasılığı şöyle verilir:
i=1, 2, …,n için tek bir değişken ile ilişkili olasılık yoğunluk fonksiyonu olarak ifade edilsin. Bu olasılık rassal değişkenlerle ilişkili olasılık yoğunluklarından n - 1 tane diğer değişkenlerle entegrasyonu kombinasyon suretiyle elde edilir:
Bağımsızlık
Sürekli rassal değişken olan birbirlerinden bağımsız olmaları için
koşuluna tam olarak uymaları gerekir.
Eğer n elemanlı bir rassal değişken vektörünün ortak olasılık dağılımı tek bir değişken için n değişik fonksiyona faktörize edilebilirse; yani
ise, o halde, n değişkenin hepsi birbirlerinden bağımsızlık gösteriyor demektir. Bu halde her bir fonksiyon için marjinal olasılık fonksiyonu şöyle verilir:
Örneğin
Çoklu boyutlu olasılık fonksiyonlarının verilen tanımını biraz daha açığa kavuşturmak için basit bir örneğin alınsın; bu iki bilinmeyenli bir rassal vektör olsun. Koordinatları olan iki boyutlu rassal vektör, olarak isimlendirilsin. Pozitif x ve pozitif y kuadrantları içinde için olasılık elde etmek şöyle
fr: İlk defa olasılık kuramı ile değişkenler hesabını bileştiren temel eser.
Kolmogorov, Andrei Nikolajevich (1933). Grundbegriffe der Wahrscheinlichkeitrechnung.
de:Olasılık kuramının ilk defa modern ölçü-teorisi temeline konulması. İngilizce tercümesi Foundations of the Theory of Probability olarak 1950de yayınlanmıştır.
İlgili Araştırma Makaleleri
Olasılık kuramı ve istatistik bilim dallarında varyans bir rassal değişken, bir olasılık dağılımı veya örneklem için istatistiksel yayılımın, mümkün bütün değerlerin beklenen değer veya ortalamadan uzaklıklarının karelerinin ortalaması şeklinde bulunan bir ölçüdür. Ortalama bir dağılımın merkezsel konum noktasını bulmaya çalışırken, varyans değerlerin ne ölçekte veya ne derecede yaygın olduklarını tanımlamayı hedef alır. Varyans için ölçülme birimi orijinal değişkenin biriminin karesidir. Varyansın karekökü standart sapma olarak adlandırılır; bunun ölçme birimi orijinal değişkenle aynı birimde olur ve bu nedenle daha kolayca yorumlanabilir.
Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.
Rassal değişken kavramının geliştirilmesi ile, sezgi yoluyla anlaşılan şans kavramı, soyutlaştırarak teorik matematik analiz alanına sokulmuş ve bu geliştirilen matematik kavram ile olasılık kuramı ve matematiksel istatistiğin temeli kurulmuştur.
Merkezi limit teoremi büyük bir sayıda olan bağımsız ve aynı dağılım gösteren rassal değişkenlerin aritmetik ortalamasının, yaklaşık olarak normal dağılım göstereceğini ifade eden bir teoremdir. Matematiksel bir ifadeyle, bir merkezi limit teoremi olasılık kuramı içinde bulunan bir zayıf yakınsama sonucu setidir. Bunların hepsi, birçok bağımsız aynı dağılım gösteren rassal değişkenlerin herhangi bir toplam değerinin limitte belirli bir "çekim gücü gösteren dağılıma" göre dağılım gösterme eğiliminde olduğu gerçeğini önerir.
Bernoulli dağılımı olasılık kuramı ve istatistik bilim dallarında, p olasılıkla başarı ile 1 değeri alan ve olasılıkla başarısızlık ile 0 değeri alan bir ayrık olasılık dağılımıdır. İsmi ilk açıklamayı yapan İsviçreli bilim insanı Jakob Bernoulli anısına verilmiştir.
Olasılık kuramı ve istatistik bilim dallarında geometrik dağılım şu iki şekilde ifade edilebilen ayrık olasılık dağılımıdır:
Bütün tam sayılar setine, yani { 1, 2, 3, .... } üzerine, bağlı olarak X sayıda Bernoulli denemesinde ilk başarıyı elde etmenin olasılık dağılımı; veya
Bütün tam sayılar setine, yani {1, 2,3, ....} üzerine, bağlı olarak ilk başarıyı elde etmeden Y = X − 1 başarısızlık sayısı olasılık dağılımı.
Bir olasılık dağılımı bir rassal olayın ortaya çıkabilmesi için değerleri ve olasılıkları tanımlar. Değerler olay için mümkün olan tüm sonuçları kapsamalıdır ve olasılıkların toplamı bire eşit olmalıdır. Örneğin, bir rassal olay olarak madeni paranın tek bir defa havaya atılıp yere düşmesi ele alınsın; değerler 'yazı' veya 'tura' veya bunlar isimsel değişken ölçeğinde ifade edilirse 0 (yazı) veya 1 (tura) olur; olasılıklar ise her iki değer için ½ olacaktır. Böylece madeni bir paranın tek bir defa atılma olayı için iki değer ve ilişkili iki olasılık bu rassal olayın olasılık dağılımı olur. Bu dağılım ayrık olasılık dağılımıdır; çünkü sayılabilir şekilde ayrı ayrı sonuçlar ve bunlara bağlı olan pozitif olasılıklar vardır.
Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.
Sürekli tekdüze dağılım (İngilizce: continuous uniform distribution) olasılık kuramı ve istatistik bilim dallarında, her elemanı, olasılığın desteklendiği aynı büyüklükteki aralık içinde bulunabilir, her sürekli değer için aynı sabit olasılık gösteren bir olasılık dağılımları ailesidir. Desteklenen aralık iki parametre ile, yani minimum değer a ve maksimum değer b ile, tanımlanmaktadır. Bu dağılım kısa olarak U(a,b) olarak anılır.
Olasılık teorisi ya da ihtimaliyet teorisi rastgele olayların analizi ile ilgilenen bir matematik bilim dalıdır. Olasılık teorisinin ana ögeleri rassal değişkenler, saf rassal süreçler, olaylar olarak sayılabilir. Bunlar ya tek olarak ortaya çıkan veya bir zaman dönemi içinde gelişerek meydana gelen, ilk görünüşü rastgele bir şekilde olan deterministik olmayan olayların veya ölçülebilir miktarların matematiksel soyutlamalarıdır. Bir madeni parayı yazı-tura denemesi için havaya atmak veya bir zarı atmak ile ortaya çıkan sonuç ilk bakışta rastgele bir olay olarak görülebilirse bile eğer birbirini takip eden rastgele olaylar tekrar tekrar ortaya çıkartılırsa incelenebilecek ve tahmin edilebilecek belirli bir istatistiksel seyir takip ettikleri görülecektir. Bu türlü olaylar ve sonuçların seyirlerini betimleyen iki temsilci matematiksel sonuç büyük sayılar yasası ve merkezsel limit teoremidir.
Olasılık kuramı ve istatistik bilim dallarında birikimli dağılım fonksiyonu bir reel değerli rassal değişken olan Xin olasılık dağılımını tümüyle tanımlayan bir fonksiyondur. Olasılık dağılım fonksiyonu veya sadece dağılım fonksiyonu olarak da anılmaktadır. Her bir reel sayı olan x için X'in birikimli dağılım fonksiyonu şöyle ifade edilir:
Olasılık kuramı ve istatistik bilim dallarında bir rassal değişken X için olasılık yoğunluk fonksiyonu bir reel sayılı sürekli fonksiyonu olup f ile ifade edilir ve şu özellikleri olması gereklidir:
üzerinde pozitif veya sıfır değerleri alır;
üzerinde integral değeri bulunabilir;
koşuluna uyar, yani eğri altındaki tüm alan bire eşittir.
Olasılık kuramı ve istatistik bilim dallarında, bir rassal değişken X için, eğer beklenen değer var ise, moment üreten fonksiyon şöyle tanımlanır:
Olasılık kuramı içinde herhangi bir rassal değişken için karakteristik fonksiyon, bu değişkenin olasılık dağılımını tüm olarak tanımlar. Herhangi bir rassal değişken X için, gerçel doğru üzerinde, bu fonksiyonu tanımlayan formül şöyle yazılır:
Büyük Sayılar Kanunu ya da Büyük Sayılar Yasası, bir rassal değişkenin uzun vadeli kararlılığını tanımlayan bir olasılık teoremidir. Sonlu bir beklenen değere sahip birbirinden bağımsız ve eşit dağılıma sahip bir rassal değişkenler örneklemi verildiğinde, bu gözlemlerin ortalaması sonuçta bu beklenen değere yakınsayacak ve bu değere yakın bir seyir izleyecektir.
Olasılık kuramı ve istatistik bilimsel dallarında bir reel-değerli rassal değişken için k-ıncı ortalama etrafındaki moment, E beklenen değer operatörü olursa
μk := E[(X - E[X])k]
Olasılık kuramı ve istatistik bilim dallarında Cauchy-Lorentz dağılımı bir sürekli olasılık dağılımı olup, bu dağılımı ilk ortaya atan Augustin Cauchy ve Hendrik Lorentz anısına adlandırılmıştır. Matematik istatistikçiler genel olarak Cauchy dağılımı adını tercih edip kullanmaktadırlar ama fizikçiler arasında Lorentz dağılımı veya Lorentz(yen) fonksiyon veya Breit-Wigner dağılımı olarak bilinip kullanılmaktadır.
Matematik bilimi içinde moment kavramı fizik bilimi için ortaya çıkartılmış olan moment kavramından geliştirilmiştir. Bir bir reel değişkenin reel-değerli fonksiyon olan f(x)in c değeri etrafında ninci momenti şöyle ifade edilir:
Olasılık kuramı bilim dalında matematiksel beklenti veya beklenen değer veya ortalama birçok defa tekrarlanan ve her tekrarda mümkün tüm olasılıklarını değiştirmeyen rastgele deneyler sonuçlarından beklenen ortalama değeri temsil eder. Bir ayrık rassal değişkennin alabileceği bütün sonuç değerlerin olasılıklarıyla çarpılması ve bu işlemin bütün değerler üzerinden toplanmasıyla elde edilen değerdir. Bir sürekli rassal değişken için rassal değişken ile olasılık yoğunluk fonksiyonunun çarpımının aralığı belirsiz integralidir. Fakat dikkat edilmelidir ki bu değerin genel pratik anlamla rasyonel olarak beklenmesi pek uygun olmayabilir, çünkü matematiksel beklentiin olasılığı çok düşük belki sıfıra çok yakın olabilir ve hatta pratikte matematiksel beklenti bulunmaz. Ağırlıklı ortalama olarak da düşünülebilir ki değerler ağırlık katsayıları verilen olasılık kütle fonksiyonu veya olasılık yoğunluk fonksiyonudur.
Olasılık kuramında iki olayın bağımsız olması bu olaylardan birinin gerçekleşme olasılığının diğer olayın gerçekleşip gerçekleşmediğine bağlı olmaması anlamına gelmektedir. Örneğin;
Bir zarın ilk atışta 6 gelmesi olayı ile ikinci atışta 6 gelmesi olayı bağımsızdır.
Öte yandan, bir zarın ilk atışta 6 gelmesi olayı ilk iki atış sonunda elde edilen sayılar toplamının 8 olması olayına bağlıdır.
Bir kart destesinden seçilen ilk kartın kırmızı olması olayı ile ikinci kartın aynı renkte olması olayı bağımsızdır. Ne var ki, seçilen kartın desteye geri konulmaması durumunda bu iki olay bağımlıdır.
Bu sayfa, bu Vikipedi makalesine dayanmaktadır. Metin, CC BY-SA 4.0 lisansı altında mevcuttur; ek koşullar uygulanabilir. Görseller, videolar ve sesler kendi lisansları altında mevcuttur.