İçeriğe atla

Biçim algısı

Biçim algısı, nesnelerin görsel öğelerinin, özellikle şekiller, desenler ve önceden tanımlanmış önemli özelliklerle ilgili olanların tanınmasıdır. Bir nesne retina tarafından iki boyutlu bir görüntü olarak algılanır,[1] ancak görüntü aynı nesne için görüntülendiği bağlam, nesnenin görünen boyutu, bulunduğu açı açısından farklılık gösterebilir. Görüntülendiğinde ne kadar aydınlandığını ve görüş alanının neresinde bulunduğunu gösterir.[2] Bir nesneyi gözlemlemenin her örneğinin benzersiz bir retina tepki modeline yol açmasına rağmen, beyindeki görsel işleme, bu deneyimleri benzer olarak tanıyabilir ve değişmez nesne tanımaya izin verir.[3] Görsel işleme, en düşük seviyelerin çizgileri ve konturları tanıdığı ve biraz daha yüksek seviyelerin sınırları tamamlama ve kontur kombinasyonlarını tanıma gibi görevleri yerine getirdiği bir hiyerarşide gerçekleşir. En yüksek seviyeler, tüm bir nesneyi tanımak için algılanan bilgiyi bütünleştirir.[4] Esasen nesne tanıma, onları kategorize etmek ve tanımlamak için nesnelere etiketler atama, böylece bir nesneyi diğerinden ayırt etme yeteneğidir. Görsel işleme sırasında bilgi oluşturulmaz, bunun yerine uyarıcının en ayrıntılı bilgisini ortaya çıkaracak şekilde yeniden biçimlendirilir.

Fizyoloji

Form algısı beyin için zorlu bir görevdir çünkü retinada önemli bir kör nokta ve ışığın ışığı algılayan hücreler veya fotoreseptör hücrelere ulaşmasını engelleyen retina damarlar bulunur. Beyin, kör noktaları sınır süreçleri aracılığıyla ele alır, algısal gruplama, sınır tamamlama ve şekil-zemin ayrımını içerir ve değişken aydınlatma telafisi ("aydınlatıcıyı indirgeme") ve boş alanları hayatta kalan aydınlatıcı-indirimli sinyaller ile doldurma dahil olmak üzere yüzey işleme yoluyla işler.[5]

Fotoreseptörlere ek olarak, gözün formu tanıması için düzgün çalışan bir merceğe, retinaya ve hasarsız bir optik sinire ihtiyacı vardır. Işık merceğin içinden geçer, retinaya çarpar, mevcut ışığa bağlı olarak uygun fotoreseptörleri aktive eder, bunlar ışığı optik sinir boyunca talamusun lateral genikülat çekirdeğine ve ardından birincil görsel kortekse giden bir elektrik sinyaline dönüştürür. Kortekste, yetişkin beyni, çizgiler, yön ve renk gibi bilgileri işler. Bu girdiler, nesnenin bir bütün olarak temsilinin yaratıldığı oksipito-temporal kortekse entegre edilir. Görsel bilgi, bir nesnenin şeklinin temsilinin harekete dayalı ipuçları kullanılarak oluşturulduğu dorsal akım olarak da bilinen posterior parietal kortekste işlenmeye devam eder. Tanımlama ve adlandırmanın gerçekleştiği ventral akım olarak da bilinen nesne tanıma, ön temporal kortekste eşzamanlı olarak bilginin işlendiğine inanılmaktadır. Bir nesneyi tanıma sürecinde, hem dorsal hem de ventral akımlar aktiftir, ancak ventral akım nesneleri ayırt etmede ve tanımada daha önemlidir. Dorsal akış, yalnızca iki nesne benzer şekillere sahip olduğunda ve görüntüler bozulduğunda nesne tanımaya katkıda bulunur. Beynin farklı bölümlerinin aktivasyonunda gözlemlenen gecikme, basitten karmaşığa doğru ilerleyen nesne temsilleriyle görsel uyaranların hiyerarşik olarak işlenmesi fikrini destekler.[5]

Gelişim

Beş aylıkken bebekler, yetişkinler gibi derinlik ve şekil de dahil olmak üzere üç boyutlu görüntüleri algılamak için çizgi bağlantı bilgilerini kullanabilirler.[6] Bununla birlikte, iki nesne arasında ayrım yapmak için hareket ve renk ipuçlarını kullanma becerisinde küçük bebekler ve yetişkinler arasında farklılıklar vardır.[7] Görsel bilgi daha sonra, bir nesne şeklinin temsilinin harekete dayalı ipuçları kullanılarak oluşturulduğu dorsal akım olarak da bilinen posterior parietal kortekste işlenmeye devam eder. Bebek ve yetişkin beyni arasındaki farklılıkların tanımlanması, ya bebeğin korteksinin işlevsel olarak yeniden düzenlenmesinin ya da bebeklerde cins dürtülerinin gözlemlendiği yaşa bağlı farklılıkların olduğunu açıkça ortaya koymaktadır. Bebek beyni yetişkin beyniyle aynı olmasa da, uzmanlık alanları ve bir işlem hiyerarşisi ile benzerdir. Bununla birlikte, yetişkinlerin durağan bakışlardan formu algılama yetenekleri tam olarak anlaşılmamıştır.[8]

İşlev bozukluğu

Nesnelerin boyut ve şekillerindeki farklılıkları ayırt etmedeki bozuklukların beyin hasarı, felç, epilepsi ve oksijen yoksunluğu gibi birçok nedeni olabilir. Beyinde yaralanma veya hastalık sonucu gelişen lezyonlar nesne tanımayı zorlaştırır. Bir lezyon mevcut olduğunda özellikle nesne tanımada eksikliklere yol açan bölgeler, sağ lateral fusiform girus ve ventrolateral oksipito-temporal korteksi içerir. Bu alanlar, nesne tanımanın temeli olan şekil ve kontur bilgilerinin işlenmesi için çok önemlidir.[9] Bahsedilen alanlardaki hasarın nesne tanımada eksikliklere yol açtığını destekleyen kanıtlar olsa da, nedenine bakılmaksızın beyin hasarının tipik olarak yaygın olduğunu, beynin her iki yarısında da mevcut olduğunu ve ana yapıların tanımlanmasını zorlaştırdığını belirtmek önemlidir.[12] Çoğu hasar kalıcı olmasına rağmen, beynin etkilenen yarısının etkilenmeyen bölgelerinde yeniden yapılandığının kanıtı vardır ve bu da hastaların bazı yeteneklerini yeniden kazanmasını mümkün kılar.[10]

Biçim algısındaki işlev bozuklukları, görsel bilginin nasıl yorumlandığı olan görsel işlemeyi içeren çeşitli alanlarda ortaya çıkar. Bu işlev bozukluklarının gerçek görme ile hiçbir ilgisi yoktur, daha çok beynin gözün gördüğünü nasıl anladığını etkiler. Görsel kapanış, görsel-mekansal ilişkiler, görsel hafıza ve görsel izleme alanlarında problemler ortaya çıkabilir. Var olan özel görsel problemi belirledikten sonra, müdahale göz egzersizlerini, bilgisayar programlarıyla çalışmayı, nöroterapiyi, fiziksel aktiviteleri ve akademik ayarlamaları içerebilir.[11]

Yaralanma ve hastalık

Beyinde oluşabilecek potantiyel hasarlar inme, oksijen yoksunluğunu, küt bir cisimle oluşan kafa travmasını ve cerrahi yaralanmaları içerir ancak bunlarla sınırlı değildir. Hastaların beyinlerinde, multipl skleroz veya epilepsi gibi yaralanma veya hastalık sonucu gelişen lezyonları olduğunda , birçok farklı agnozi şeklinde ortaya çıkabilen nesne tanıma bozukluğu olabilir.[9] Benzer eksiklikler, küt objeyle oluşan kafa travması geçiren, felç, şiddetli karbon monoksit zehirlenmesi yaşayan yetişkinlerin yanı sıra tümörlerin çıkarılmasının ardından cerrahi hasar gören yetişkinlerde de gözlenmiştir.[10] Bu bozukluklar lezyon formasyonuna neden olmayan epilepsi geçiren çocuklarda da gözlemlenebilir.[12] Genel inanış şudur ki, bu durumlarda, krizler nesne işleyişini bozacak fonksiyonel yıkımlara neden olur. Bir lezyon mevcut olduğunda özellikle nesne tanımada eksikliklere yol açan bölgeler, sağ lateral fusiform girus ve ventrolateral veya ventromedial oksipito-temporal korteksi içerir. Bu yapıların tümü, nesne tanımanın temeli olan şekil ve kontur bilgilerinin işlenmesi için çok önemli olarak tanımlanmıştır. Bu yapılara zarar veren kişiler, nesneleri tam olarak tanıyamasalar da, nesnelerin hareketini hala ayırt edebilirler. Yalnızca parietal lobdaki lezyonlar, bir nesnenin yerini belirlemede eksikliklerle ilişkilendirilmiştir.[13] Yukarıda geçen bölgelerde meydana gelen hasarların nesne algısında bozukluklara yol açtığına dair güçlü kanıtların olmasına rağmen şunu bilmek gerekir ki hangi nedenle oluşmuş olursa olsun beyin hasarları uzantılıdır ve beyinin her iki yarım küresinde de bulunur. Çoğu hasarın geri alınamamasına rağmen, etkilenen yarım kürenin etkilenmeyen bölgelerinde yeniden yapılanma kanıtı vardır ve bu da hastaların bir miktar işlevi geri kazanmasını mümkün kılar.

Yaşlanma

Yaşlı insanlarda görsel form öğreniminin korunup korunmadığı bilinmemektedir. Çalışmalar, eğitimin hem genç hem de yaşlı yetişkinlerde form algısında iyileşmeye neden olduğunu kanıtlıyor. Fakat, yerel unsurları entegre etmeyi öğrenmek yaştan olumsuz etkilenir.[14] İlerleyen yaş, nesneleri tanımlamak için uyaranları verimli bir şekilde işleme yeteneğini engeller. Daha spesifik olarak, bir nesnenin en temel görsel bileşenlerini tanımak çok daha uzun sürer. Nesne parçalarını tanımak için gereken süre genişlediğinden, nesnenin kendisinin tanınması da gecikir.[15] Kısmen engellenmiş nesnelerin tanınması da yaşlandıkça yavaşlar. Kısmen gizlenmiş bir nesneyi tanımak için, görebildiğimiz kontur ve sınırlara dayalı algısal çıkarımlar yapmamız gerekir. Bu, çoğu genç yetişkinin yapabileceği bir şeydir, ancak yaşla birlikte yavaşlar.[16] Genel olarak yaşlanma, merkezi sinir sisteminin işleme yeteneklerinde bir azalmaya neden olur ve bu da çok karmaşık form algılama sürecini geciktirir.

Ayrıca bakınız

Kaynakça

  1. ^ Tse (2004). "Visual Form Perception". The Encyclopedia of Neuroscience. 4. 
  2. ^ Carlson (2011). "High temporal resolution decoding of object position and category". Journal of Vision. 10 (9): 1-17. doi:10.1167/11.10.9. PMID 21920851. 
  3. ^ DiCarlo (2012). "How does the brain solve visual object recognition?". Neuron. 73 (3): 415-434. doi:10.1016/j.neuron.2012.01.010. PMC 3306444 $2. PMID 22325196. 
  4. ^ The Vision Revolution. BenBella Books. 2010. 
  5. ^ a b "Arşivlenmiş kopya" (PDF). 22 Temmuz 2013 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 10 Temmuz 2021.  Kaynak hatası: Geçersiz <ref> etiketi: "cns" adı farklı içerikte birden fazla tanımlanmış (Bkz: )
  6. ^ Corrow (2012). "Infants and adults use line junction information to perceive 3D shape". Journal of Vision. 1. 12 (8): 1-7. doi:10.1167/12.1.8. PMC 4084969 $2. PMID 22238184. 
  7. ^ Wilcox (2012). "Functional activation of the infant cortex during object processing". NeuroImage. 62 (3): 1833-1840. doi:10.1016/j.neuroimage.2012.05.039. PMC 3457789 $2. PMID 22634218. 
  8. ^ http://kellmanlab.psych.ucla.edu/HPL/files/Kellman%20%26%20Short%20-%20Development%20of%203D%20Form%20Perception%20(JEP%201987.pdf[]
  9. ^ a b Konen (2011). "The functional neuroanatomy of object agnosia: a case study". Neuron. 71 (1): 49-60. doi:10.1016/j.neuron.2011.05.030. PMC 4896507 $2. PMID 21745637.  Kaynak hatası: Geçersiz <ref> etiketi: "konen" adı farklı içerikte birden fazla tanımlanmış (Bkz: )
  10. ^ a b karnath (2009). "The anatomy of object recognition - visual form agnosia caused by medial occipitotemporal stroke". The Journal of Neuroscience. 18. 29 (18): 5854-5862. doi:10.1523/JNEUROSCI.5192-08.2009. PMC 6665227 $2. PMID 19420252.  Kaynak hatası: Geçersiz <ref> etiketi: "karnath" adı farklı içerikte birden fazla tanımlanmış (Bkz: )
  11. ^ "Visual Processing Disorder and Dyslexia | Behavioural Neurotherapy Clinic". 8 Şubat 2006 tarihinde kaynağından arşivlendi. 
  12. ^ Brancati (2012). "Impaired object identification in idiopathic childhood occipital epilepsy". Epilepsia. 53 (4): 686-694. doi:10.1111/j.1528-1167.2012.03410.x. PMID 22352401. 
  13. ^ Pennick (2011). "Specialization and integration of brain responses to object recognition and location detection". Brain and Behavior. 2 (1): 6-14. doi:10.1002/brb3.27. PMC 3343293 $2. PMID 22574269. 
  14. ^ Kuai (2013). "Learning to See, but not Discriminate, Visual Forms Is Impaired in Aging". Psychological Science. 24 (4): 412-422. doi:10.1177/0956797612459764. PMID 23447559. 
  15. ^ Cognitive neuroscience of aging: linking cognitive and cerebral aging. Oxford University Press. 2005. ISBN 0-19-515674-9. 
  16. ^ Danzigera (1978). "Age and the perception of incomplete figures". Experimental Aging Research. 4 (1). 

İlgili Araştırma Makaleleri

Agnozi, duyusal bilgiyi işleme yetersizliğidir. Genellikle özel bir duyu ya da hafıza kaybının olmadığı durumlarda nesneleri, kişileri, sesleri, şekilleri, kokuları tanıma yeteneğinin kaybıdır.

<span class="mw-page-title-main">Gece körlüğü</span> göz hastalığı

Retinitis pigmentosa (RP), halk arasında tavuk karası ve gece körlüğü adlarıyla bilinen ve görme kaybına neden olan genetik bir göz hastalığıdır. Her 4.000 kişide 1'i etkilediği tahmin edilmektedir.

<span class="mw-page-title-main">İnsan beyni</span> insan sinir sisteminin ana organı

İnsan beyni, insan sinir sisteminin merkezi organıdır ve omurilikle birlikte merkezi sinir sistemini oluşturur.

Azalmış duygulanım, bazen duygusal küntlük, duygusal donukluk veya duygusal uyuşma olarak da bilinir, bireyde azalmış duygusal tepkenlik durumudur. Bu durum, özellikle normalde duygusal tepkiler uyandırması beklenen konular hakkında konuşurken, duyguların sözlü veya sözsüz olarak ifade edilememesi ile karakterize edilir. Bu durumdaki bireylerde, ifade edici jestler nadirdir ve yüz ifadesi veya ses tonlamasında çok az değişiklik vardır. Ayrıca, azalmış duygulanım otizm, şizofreni, depresyon, travma sonrası stres bozukluğu, depersonalizasyon-derealizasyon bozukluğu, şizoid kişilik bozukluğu veya beyin hasarının belirtileri olabilir. Ayrıca bazı ilaçların yan etkisi olarak da gözlenebilir.

<span class="mw-page-title-main">Temporal lob</span> İnsanların beyninde bulunan dört lobdan biri

Temporal lob, memelilerin beynindeki serebral korteksin dört ana lobundan biridir. Temporal lob, memeli beyninin her iki serebral hemisferindeki lateral fissürün altındadır.

Görsel algı çevredeki objelerin görülebilir spektruma yansıttığı ışığı kullanarak çevreyi yorumlayabilme yeteneğidir. Bu, etrafı ne kadar net görmeyi ifade eden görsel keskinlikten farklıdır. Bir kişi 20/20 vizyonu olsa bile görsel algısal işleme ile ilgili problemler yaşayabilir.

<span class="mw-page-title-main">Serebral korteks</span> kafada bir bölüm

Serebral korteks veya beyin korteksi, insan ve diğer memeli beyinlerindeki serebrumun sinir dokusundan oluşan dış tabakasıdır. Beynin diğer kısımlarının çoğunun beyaz renkte olmasını sağlayan yalıtımın kortekste bulunmamasından dolayı rengi gridir. Korteks serebrum ve serebellumun dış kısımlarını örter ve kalınlığı 1,5-5,0 mm arasında değişir. Korteksin serebrumu örten kısımı serebral korteks olarak adlandırılmaktadır.

<span class="mw-page-title-main">Perirhinal korteks</span>

Perirhinal korteks, Medial temporal lob üzerinde, bilgi depolanmasında önemli bir rol oynayan beyin bölümü.

Yankı belleği duyusal bellek kayıtlarından biridir; işitsel bilgiyi tutmaya özgü duyusal belleğin bir bileşenidir. Seslere yönelik duyusal bellek yalnızca insanların algıladıkları yankı belleğinin bir formudur. İçinde gözlerimizin uyarıları tekrar tekrar tarayabildiği görsel bellekten farklı olarak, işitsel uyarı tekrar tekrar taranamaz. Genel olarak, yankı bellekleri görüntüsel belleklerden biraz daha uzun zaman devreleri olarak depolanır. İşitsel uyarılar, işlenebilmeden ve anlaşılabilmeden önce kulak tarafından teker teker alınır/duyulur. Söz gelimi, radyoyu dinlemek bir dergi okumaktan çok daha farklıdır. Bir dergi tekrar tekrar okunabilirken, bir kişi belirli bir zamanda radyoya yalnızca bir seferlik kulak verebilir. Denilebilir ki yankı belleği bir bekleme tankı kavramı gibidir. Çünkü bir ses, takip eden ses duyulana kadar işlenmez (tutulur) ve ancak ondan sonra anlamlandırılabilir. Bu özel duyusal deponun büyük miktarlarda işitsel bilgiyi depolaması çok kısa bir zaman devresinde olabilmektedir. Bu yankısal ses zihinde yankılanır ve işitsel uyarının verilmesinden sonra çok bir kısa zamanda tekrarlanır (replay). Yankı belleği uyarıyı yalnızca bir dereceye kadar kabaca, primitif yönlerden şifreler, mesela ses perdesi (pitch), bağlantısız beyin bölgelerine yerleşimini belirler.

Boston Adlandırma Testi (BAT) orijinali Kaplan, Goodglass ve Weintraub (1983) tarafından geliştirilmiştir. Nesne adlandırma ve kelime geri getirmeyi içeren dil becerisini değerlendirmek amacıyla kullanılan ve bilinen en iyi nöropsikolojik araçtır. BAT iletişim bozukluğu, afazi, demanslar ya da beyin lezyonu gibi farklı klinik patolojileri olan çocuk, yetişkin ve yaşlı bireylerin değerlendirmesinde kullanılmaktadır. Farklı dillerde uyarlanmış formları vardır. BAT İspanya, Belçika, Kore, Avustralya, İsveç, Brezilya, Yeni Zelanda, Yunanistan, Portekiz, Fransa ve Türkiye gibi değişik ülkelerin dillerine uyarlanmış ve ilgili kültürlere özgü normları belirlenmiştir.

<span class="mw-page-title-main">Herpes virüs ensefaliti</span>

Herpes virüs ensefaliti, herpes simpleks virüsüne bağlı ensefalittir.

<span class="mw-page-title-main">Posterior serebral arter</span>

Posterior Serebral Arter (PCA) ya da arka beyin atardamarı insan beyninin arka kısmı olan oksipital lobu ve bazı beyin sapı alanlarını besleyen bir çift arterdir. Baziler arterin terminal kısmının çatallanması ile her iki yana doğru uzanır. Posterior komünikan arter ile internal karotid arter ve orta serebral arter ile bağlantı kurar.

Görsel agnozi, görsel olarak sunulan nesnelerin tanınmasında bir bozukluktur. Bunun nedeni görme, dil, hafıza veya zeka eksikliği değildir. Kortikal körlük birincil görme korteksindeki lezyonlar sonucu oluşurken, görsel agnozi beyindeki arka oksipital ve/veya temporal lob (lar) gibi daha ön kortekslere zarar gelmesi sonucu olur.

Geçmişe dönüş ya da istemsiz tekrar eden bellek, bireylerin eski deneyimleri ya da eski deneyimlerin ögelerini ani ve genellikle güçlü bir şekilde yeniden deneyimlediği psikolojik fenomendir. Bu deneyimler sevindirici, üzgün, heyecan verici veya herhangi başka bir duygu olabilir. Geçmişe dönüş terimi, özellikle, anı istemsiz hatırlandığında ve/veya bu anı insanın tekrar yaşayabileceği kadar yoğun olduğunda, bunun gerçek zamanda yaşanmadığını, sadece bir anı olduğunu fark edemeyeceği durumlarda kullanılır.

<span class="mw-page-title-main">Hafıza ve yaşlanma</span>

Bazen "normal yaşlanma" olarak tanımlanan yaşa bağlı hafıza kaybı, Alzheimer hastalığı gibi demans türleriyle ilişkili hafıza kaybından niteliksel olarak farklıdır ve farklı bir beyin mekanizmasına sahip olduğuna inanılır.

Tekrarlı ön-hazırlama etkisi, uyaranlar tekrar tekrar sunulduğunda davranışsal bir tepkideki gelişmelere gönderme yapar. Gelişmeler, doğruluk veya tepki süresi açısından ölçülebilir ve tekrarlanan uyaranlar önceki uyaranlarla aynı veya benzer olduğunda ortaya çıkabilir. Bu gelişmelerin kümülatif olduğu gösterilmiştir, bu nedenle tekrar sayısı arttıkça yanıtlar en fazla yedi tekrara kadar sürekli olarak daha hızlı olur. Bu gelişmeler, tekrarlanan maddeler yön, boyut ve konum açısından biraz değiştirildiğinde de bulunur. Etkinin boyutu, maddenin sunulduğu sürenin uzunluğu ve tekrarlanan maddelerin ilk ve sonraki sunumları arasındaki sürenin uzunluğuyla da ayarlanır.

Üst temporal sulkus (STS), beynin temporal lobundaki superior temporal girusu orta temporal girustan ayıran sulkustur. Bir sulkus, beynin en büyük kısmına, serebruma doğru kıvrılan derin bir oluktur ve bir girus, beynin dışına doğru kıvrılan bir sırttır.

Mikropsi, nesnelerin gerçekte olduğundan daha küçük olarak algılandığı, insanın görsel algısını etkileyen bir durumdur. Mikropsiye optik faktörler, gözdeki görüntülerin bozulması, beyindeki değişiklikler ve psikolojik faktörlerden kaynaklanır. Dissosiyatif fenomenler, beyin lateralizasyon bozukluğunun sonucu olabilen mikropsi ile bağlantılıdır.

<span class="mw-page-title-main">Körgörüş</span>

Kör görüş (blindsight) kortikal olarak kör olan kişilerin, striat korteks veya Brodmann Alanı 17 olarak da bilinen birincil görsel korteksteki lezyonlar nedeniyle bilinçli olarak görmedikleri görsel uyaranlara yanıt verme yeteneğidir. Terim, Lawrence Weiskrantz ve meslektaşları tarafından Brain'in 1974 sayısında yayınlanan bir makalede ortaya atıldı. Kortikal olarak kör bir hastanın ayırt etme kapasitesini inceleyen önceki bir makale 1973'te Nature'da yayınlandı. Tip 1 kör görüş, herhangi bir uyaranın bilinçli farkındalığı olmadan görsel bir uyaranın yönlerini - şansın önemli ölçüde üzerindeki seviyelerde - tahmin etme yeteneğine verilen terimdir. Tip 2 kör görüş, hastalar kör alanlarında bir değişiklik olduğu hissine sahip olduklarını iddia ettiklerinde ortaya çıkar.

Serebral atrofi, beyni etkileyen hastalıkların çoğunun ortak bir özelliğidir. Herhangi bir dokunun atrofisi, hücre boyutunda bir azalma anlamına gelir; bu, sitoplazmik proteinlerin ilerleyici kaybına bağlı olabilir. Beyin dokusunda atrofi, nöronların ve bunlar arasındaki bağlantıların kaybını tanımlar. Beyin atrofisi iki ana kategoriye ayrılabilir: genelleştirilmiş ve fokal atrofi. Genelleştirilmiş atrofi beynin tamamında meydana gelirken, fokal atrofi belirli bir konumdaki hücreleri etkiler. Serebral hemisferler etkilenirse, bilinçli düşünce ve istemli süreçler bozulabilir.