İçeriğe atla

Bernoulli sayısı

Matematikte Bernoulli sayıları, sayı kuramıyla derin bir ilişkisi olan rasyonel sayı dizisidir. Sayı değerleri Riemann zeta işlevinin negatif tam sayılar için kazandığı değerlere yakındır.

n 1'den farklı bir tek sayı olmak üzere Bn = 0 eşitliği geçerlidir. B1 ise 1/2 ya da -1/2 değerine sahiptir. Sıfırdan farklı birkaç Bernoulli sayısı aşağıda gösterilmiştir.

n 0 1 2 4 6 8 10 12
Bn1 ±1/2 1/6 -1/30 1/42 -1/30 5/66 -691/2730

Bernoulli sayıları Jakob Bernoulli tarafından, Japon matematikçi Seki Kōwa'yla hemen hemen aynı zamanda bulunmuştur. Seki'nin Katsuyo Sampo adlı kitabında yer alan bulgular ölümünün ardından 1712 yılında yayımlanmıştır.[1][2] Bernoulli'ninkiler de yine ölümünden sonra Ars Conjectandi adlı kitap halinde 1713'te yayımlanmıştır.

Bernoulli sayıları teğet ve hiperbolik teğet işlevlerinin Taylor dizisi açılımlarında, Euler–Maclaurin formülünde ve Riemann zeta işlevinin belli değerlerine ilişkin ifadelerde kullanılmaktadır.

Ada Lovelace, analitik motora ilişkin 1842 tarihli notlarının G bölümünde Bernoulli sayılarını Babbage'ın makinesini kullanarak oluşturmaya yarayan bir algoritmadan söz etmektedir.[3] Böylece, Bernoulli sayıları tarihin ilk bilgisayar programına da konu olmuştur.

Ayrıca bakınız

  • Çoklu-Bernoulli sayısı
  • q-Bernoulli sayısı
  • Bernoulli polinomları
  • Riemann zeta işlevi
  • Hurwitz zeta işlevi
  • Euler sayısı
  • Euler toplamı

Notlar

  1. ^ Selin, H. (1997), s. 891
  2. ^ Smith, D. E. (1914), s. 108
  3. ^ Menabrea'nın G notu

Kaynakça

Dış bağlantılar

İlgili Araştırma Makaleleri

Sayı, sayma, ölçme ve etiketleme için kullanılan bir matematiksel nesnedir. En temel örnek, doğal sayılardır. Sayılar, sayı adı (numeral) ile dilde temsil edilebilir. Daha evrensel olarak, tekil sayılar rakam adı verilen sembollerle temsil edilebilir; örneğin, "5" beş sayısını temsil eden bir rakamdır. Yalnızca nispeten az sayıda sembolün ezberlenebilmesi nedeniyle, temel rakamlar genellikle bir rakam sisteminde organize edilir, bu da herhangi bir sayıyı temsil etmenin organize bir yoludur. En yaygın rakam sistemi Hint-Arap rakam sistemidir, bu sistem on temel sayısal sembol, yani rakam kullanılarak herhangi bir negatif olmayan tam sayının temsil edilmesine olanak tanır. Sayılar sayma ve ölçme dışında, etiketlerde, sıralamada ve kodlarda kullanılmak için de sıklıkla kullanılır. Yaygın kullanımda, bir rakam ile temsil ettiği sayı net bir şekilde ayrılmaz.

Riemann hipotezi, matematik alanında ilk kez 1859 yılında Bernhard Riemann tarafından ifade edilmiş ve henüz çözülmemiş bir problemdir.

<span class="mw-page-title-main">Asal sayı</span> sadece iki pozitif tam sayı böleni olan doğal sayılardır

Bir asal sayı, yalnızca 1'den büyük olup kendisinden küçük iki doğal sayının çarpımı olarak ifade edilemeyen bir doğal sayıdır. 1'den büyük ve asal olmayan doğal sayılara bileşik sayı adı verilir. Örneğin, 5 bir asal sayıdır çünkü onu bir çarpım olarak ifade etmenin mümkün olan yolları, 1 × 5 veya 5 × 1, yalnızca 5 sayısını içermektedir. Ancak, 4 bir bileşik sayıdır çünkü bu, her iki sayının da 4'ten küçük olduğu bir çarpım şeklindedir. Asal sayılar, aritmetiğin temel teoreminden ötürü sayı teorisi alanında merkezi öneme sahiptir: 1'den büyük her doğal sayı, ya bir asal sayıdır ya da asal sayıların çarpımı olarak, sıralamalarından bağımsız bir şekilde, benzersiz olarak çarpanlarına ayrılabilir.

e sayısı veya Euler sayısı, matematik, doğal bilimler ve mühendislikte önemli yeri olan sabit bir reel sayı, doğal logaritmanın tabanı. e sayısı aşkın bir sayıdır, dolayısıyla irrasyoneldir ve tam değeri sonlu sayıda rakam kullanılarak yazılamaz. Yaklaşık değeri şöyledir:

<span class="mw-page-title-main">Karmaşık analiz</span>

Karmaşık analiz ya da başka bir deyişle kompleks analiz, bir karmaşık değişkenli fonksiyonları araştıran bir matematik dalıdır. Bir değişkenli karmaşık analize ya da çok değişkenli karmaşık analizle beraber tümüne karmaşık değişkenli fonksiyonlar teorisi de denilir.

<span class="mw-page-title-main">Sihirli kare</span> her satır, sütun ve ana köşegenlerin toplamı eşittir

Sihirli kare; boyutlu, satır, sütun ve köşegenler boyunca elemanların toplamı sabit olan bir kare matristir. Bu sabite sihirli sabit denir.

<span class="mw-page-title-main">1 − 2 + 3 − 4 + · · ·</span> Matematikte sonsuz bir seri

Matematikte 1 - 2 + 3 - 4 + ..., terimlerinin işaretleri sırasıyla değişen ardışık pozitif tam sayıların oluşturduğu sonsuz bir seridir. Serinin ilk m teriminin toplamı, Sigma toplama gösterimi kullanılarak şöyle ifade edilebilir:

Apéry sabiti, matematiğin gizemli sayılarından biridir. Elektrodinamik alanında elektronun jiromagnetik oranının ikinci ve üçüncü derece terimlerinin yanı sıra birçok fiziksel soruda karşılaşılan bu sabit, paydasında üstel fonksiyon barındıran integrallerin çözümünde de kullanılmaktadır. Debye modelinin iki boyut için hesaplanması buna örnek olarak gösterilebilir. Sayı, aşağıdaki gibi tanımlanmaktadır.

Matematikte zeta sabiti, bir tam sayının Riemann zeta fonksiyonunda yerine yazılmasıyla elde edilen sayıdır. Bu madde farklı tam sayı değerleri için zeta fonksiyonu özdeşlikleri içermektedir.

<span class="mw-page-title-main">Dirichlet eta işlevi</span>

Matematiğin analitik sayı kuramı alanında Dirichlet eta işlevi

<span class="mw-page-title-main">Riemann zeta işlevi</span>

Matematikte Riemann zeta işlevi , Alman matematikçi Bernhard Riemann tarafından 1859'da bulunmuş olan ve asal sayıların dağılımıyla olan ilişkisinden ötürü sayı kuramında önemli yeri bulunan seçkin bir işlevdir. İşlev; fizik, olasılık kuramı ve uygulamalı istatistikte de kullanılmaktadır.

Basel problemi, Pietro Mengoli tarafından 1644'te ortaya atılan ve 1735 yılında Leonhard Euler tarafından çözülen ünlü bir sayı kuramı problemidir. Zamanın matematikçilerini bir hayli uğraştırmış olan problem Euler'i 28 yaşında büyük ün sahibi yapmıştır. Euler, problemi genelleştirmiş ve onun düşünceleri Bernhard Riemann'ın 1859'da yazdığı Belirli Bir Büyüklükten Küçük Asal Sayılar Üzerine adlı makaleye esin kaynağı olmuştur. Problem, adını Euler'in ve Bernoulli ailesinin yaşadığı kent olan Basel'den almıştır.

Matematikte, birkaç fonksiyon ya da fonksiyon gruplarının kendi isimleri yeterli öneme layıktır. Bu makaleler fonksiyonları açıklamak için olan daha ayrıntılı olarak gösteren bir listedir. İstatistik dışı ve matematiksel fizik gelişmeleri sonucu özel fonksiyonlar büyük bir teori olmuştur. Modern bir, soyut incelik fonksiyon uzayıları geniş karşılaştırma görünümü, sonsuz-boyutlu ve 'isimsiz' fonksiyonlar içindeki ve simetri ya da ilişki harmonik analiz ve grup temsilileri gibi özellikler ile özel fonksiyonlar ile seçilmiştir.

<span class="mw-page-title-main">Digama fonksiyonu</span>

Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:

Matematiksel analizin sayı teorisinde Euler–Mascheroni sabiti matematiksel sabit'tir. Yunan harfi Yunanca: γ (gama) ile gösterilir.

Matematik'te, Hurwitz zeta fonksiyonu, adını Adolf Hurwitz'ten almıştır, çoğunlukla zeta fonksiyonu denir. Formel tanımı için kompleks değişken s 'in Re(s)>1 ve q 'nun Re(q)>0 yardımıyla

Sayılar teorisinde, Skewes' sayısı, birkaç çok büyük sayıdan biridir. Güney Afrikalı matematikçi Stanley Skewes tarafından bulunan ve en küçük x doğal sayılarının üst sınırlarını belirleyen şöyle bir ifadedir:

Sayı kuramında yarı asal sayılar, iki tane asal sayının çarpımı şeklinde yazılabilen pozitif tam sayılardır. Dolayısıyla ya bir asal sayının karesidirler ya da dört tane farklı pozitif bölene sahiptirler. Buna bağlı olarak, dört tane pozitif bölene sahip her sayı yarı asal olmak zorunda değildir. Bir asal sayının karesi olmayan asal sayılara ayrık asal sayılar denir. Bir yarı asal sayı n için Ω(n) tanım gereği ikiye eşittir. Yarı asallar RSA gibi kriptografi sistemlerinde kullanılır.

Bu, Wikipedia'da yer alan sayı teorisi konularıyla ilgili sayfaların bir listesidir.

Cebirsel geometride, bir periyot, bir cebirsel fonksiyonun cebirsel bir tanım kümesi üzerinden integrali olarak ifade edilebilen bir sayıdır. Periyotların toplamları ve çarpımları kapanış prensibi gereği yine periyotlardır, böylece periyotlar bir halka oluştururlar.