İçeriğe atla

Bernoulli diferansiyel denklemi

Matematikte Bernoulli diferansiyel denklemi, birinci mertebeden bir adi diferansiyel denklemin açık biçimi şöyledir:

, (Denklem I)

Yukarıdaki denklemde n≠1 ve n≠0 olursa bu denkleme Bernoulli diferansiyel denklemi denir. Bu ad, Jakob Bernoulliye ithaf olsun diye 1695 yılında konuldu. Bernoulli denklemleri özeldir. Çünkü tam çözümleri bilinir ve doğrusal olmayan diferansiyel denklemlerdir.

Çözüm

Yukarıdaki adi diferansiyel denklemde eşitliğin her iki tarafı ile bölünürse denklem aşağıdaki gibi olur:

, (Denklem II)

Burada aşağıdaki gibi bir değişken değiştirme yapılırsa;

, (Denklem III) türevi;
, (Denklem IV)

(Denklem III) ve (Denklem IV), (Denklem II)'de yerine konulursa;

, (Denklem V)

Bu adımda görüldüğü üzere denklem birinci mertebeden lineer diferansiyel denkleme dönüştü. Bundan sonra aşağıdaki integrasyon çarpanı kullanılarak denklem çözülebilir.

. (Denklem VI)

Örnek

Aşağıdaki Bernoulli denklemi örneğimiz olsun.

, (Eşitlik I)

, bir çözümdür. Eşitlik ile bölünürse

, (Eşitlik II)

(Eşitlik II)'de aşağıdaki gibi bir değişken değişimi uygulanırsa;

, (Eşitlik III) türevi;
. (Eşitlik IV)

(Eşitlik III) ve (Eşitlik IV), (Eşitlik II)'de yerine konulursa;

, (Eşitlik V)

Aşağıdaki integrasyon çarpanı kullanılırsa denklem çözülebilir;

(Eşitlik VI)

Her iki tarafı ile çarpalım,

(Eşitlik VII)

Sol taraf 'nin türevidir. Bu denklemde her iki tarafın integrali alınırsa;

(Eşitlik VIII)
(Eşitlik IX)
(Eşitlik X)

'nin çözümü;

(Eşitlik XI)

Yukarıda da belirtildiği gibi da bir çözümdür.

MATLAB kullanarak bunun doğruluğunu görebiliriz;

x = dsolve('Dy-2*y/x=-x^2*y^2','x')

Yukarıdaki söz dizimi her iki çözümü verir;

0
x^2/(x^5/5 + C1)

Ayrıca, hesaba katılmadan yapılan, çözümü[1] Wolfram Alpha'da görebilirsiniz.

Notlar

  1. ^ "y'-2*y/x=-x^2*y^2". 8 Mart 2016 tarihinde kaynağından arşivlendi. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

Laplasyen , skaler bir alanının gradyanı alınarak elde edilen vektörün diverjansıdır. Fizikteki birçok diferansiyel denklem laplasyen içerir.

<span class="mw-page-title-main">İntegral</span> fonksiyon eğrisinin altında kalan alan

İntegral veya tümlev, toplama işleminin sürekli bir aralıkta alınan hâlidir. Türev ile birlikte kalkülüsün temelini oluşturan iki işlemden birisidir. Kalkülüsün temel teoremi sayesinde aynı zamanda türevin ters işlemidir.

<span class="mw-page-title-main">Diferansiyel denklem</span>

Matematikte, diferansiyel denklem, bir ya da birden fazla fonksiyonu ve bunların türevlerini ilişkilendiren denklemdir. Fizik, kimya, mühendislik, biyoloji ve ekonomi alanlarında matematiksel modeller genellikle diferansiyel denklemler kullanılarak ifade edilirler. Bu denklemlerde, fonksiyonlar genellikle fiziksel ya da finansal değerlere, fonksiyon türevleriyse değerlerin değişim hızlarına denk gelir.

<span class="mw-page-title-main">Jakob Bernoulli</span>

Jacob Bernoulli, Bernoulli ailesindeki ünlü matematikçilerden biridir. Leibniz kalkülüsünün ilk savunucularındandır ve Leibniz- Newton kalkülüs tartışmasında Leibniz'in yanında yer almıştır. Kardeşi Johann Bernoulli ile kalkülüse yaptığı birçok katkıyla da ünlüdür. Ancak, matematiğe en önemli katkısı büyük sayılar yasası ile olasılık alanında olmuştur.

<span class="mw-page-title-main">Türev alma kuralları</span> Vikimedya liste maddesi

Türev, matematikteki ve özellikle diferansiyeldeki temel kavramlardan biridir. Aşağıda temel türev alma kuralları ve bazı fonksiyonların türev kuralları yer almaktadır.

<span class="mw-page-title-main">Adi diferansiyel denklem</span>

Matematikte adi diferansiyel denklem, tek değişkenli fonksiyonların türevlerini ilişkilendiren diferansiyel denklem çeşididir. Adi diferansiyel denklemler adı daha yaygındır. Kapalı olarak şeklinde gösterilirler. Bu ifadede denklemin derecesini gosterir.

e sayısı veya Euler sayısı, matematik, doğal bilimler ve mühendislikte önemli yeri olan sabit bir reel sayı, doğal logaritmanın tabanı. e sayısı aşkın bir sayıdır, dolayısıyla irrasyoneldir ve tam değeri sonlu sayıda rakam kullanılarak yazılamaz. Yaklaşık değeri şöyledir:

<span class="mw-page-title-main">Dalga denklemi</span> kısmi diferansiyel bir denklem

Dalga denklemi fizikte çok önemli yere sahip bir kısmi diferansiyel denklemdir. Bu denklemin çözümlerinden, ses, ışık ve su dalgalarının hareketlerini betimleyen fiziksel nicelikler çıkar. Kullanım alanı, akustik, akışkanlar mekaniği ve elektromanyetikte oldukça fazladır. Genellikle elektromanyetik dalgalar gibi dalgalar için dalga denkleminin vektörel formülasyonu kullanılır. Bu formülasyonda elektrik alanları şeklindeki vektörlerle gösterebilir ve vektörün her bi bileşeni skaler dalga denklemine uymak zorundadır. Yani vektörel dalga denklemleri çözülürken her bir bileşen ayrı ayrı çözülür. Denklemin en basit hali aşağıdaki şekliyle gösterilir,

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

Matematikte, bir kısmi diferansiyel denklem birkaç değişkenli bir fonksiyon ile bu fonksiyonun değişkenlere göre kısmi türevleri arasındaki ilişkiyi inceler.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

Bessel fonksiyonları ilk önce Daniel Bernoulli tarafından tanımlanmış ve Friedrich Bessel tarafından genelleştirilmiş

<span class="mw-page-title-main">Fourier serisi</span>

Matematikte, Fourier serileri bir periyodik fonksiyonu basit dalgalı fonksiyonların toplamına çevirir.

Gauss integrali, Euler–Poisson integrali olarak da bilinir, tüm reel sayılardaki ex2 Gauss fonksiyonunun integralidir. Alman matematik ve fizikçi Carl Friedrich Gauss'dan sonra adlandırlıdı. İntegrali şöyledir:

Matematiksel analizde Legendre fonksiyonları, aşağıdaki Legendre diferansiyel denkleminin çözümleridir.

 ;

Değişken değiştirme, İntegral, çarpanlara ayırma, denklemler, üslü denklemler, trigonometri ve diferansiyel denklemler başta olmak üzere matematiğin her alanında işlemi basitleştirmek için kullanılan matematiksel bir yöntemdir.

Matematikte, Green kuramı basit, kapalı bir C eğrisi etrafındaki çizgi integrali ile C eğrisinin sınırlandırdığı D düzlem bölgesi üzerindeki çift katlı integral arasındaki ilişkiyi verir. Teorem adını matematikçi George Green'den almıştır ve daha genel hâli olan Stokes teoreminin iki boyuttaki özel durumudur.

<span class="mw-page-title-main">Lagrange mekaniği</span> Klasik mekaniğin yeniden formüle edilmesi

Lagrange mekaniği, klasik mekaniğin yeniden formüle edilmesidir. İtalyan-Fransız matematikçi ve astronom Joseph-Louis Lagrange tarafından 1788’de geliştirilmiştir.

Tam diferansiyel denklem veya Sağın diferansiyel denklem fizikte ve mühendislikte sıklıkla kullanılan bir tür adi diferansiyel denklemdir.