İçeriğe atla

Bergman çekirdeği

Matematiğin bir alanı olan çok değişkenli kompleks analizde, Bergman çekirdeği, karesi integrallenebilir holomorf fonksiyonlardan oluşan Hilbert uzayının (yani Bergman uzayının) doğuran çekirdeğidir. Stefan Bergman'ın ardından isimlendirilmiştir.

Tanım

deki bir bölgesinde karesi integrallenebilir fonksiyonları ile gösterelim. Ayrıca, bölgesinde tanımlı olan holomorf fonksiyonların uzayını da ile gösterelim. O zaman, Bergman uzayı , karesi integrallenebilir holomorf fonksiyonların uzayı olacaktır ve şu özelliklere sahiptir.

  • Hilbert uzayıdır:
    • Öncelikle, Bergman uzayı, tanımı gereği yine bir Hilbert uzayı olan nin doğrusal bir altuzayıdır.
    • Aynı zamanda, Bergman uzayı, içinde kapalıdır. Bu yüzden, kendi başına da tam bir metrik uzaydır. Bu uzayın kapalı olmasının sebebi nin her tıkız alt kümesi için eşitsizliğinin sağlanmasıdır. Bu halde, bir holomorf fonksiyon dizisinin içindeki yakınsaklığı tıkız kümeler üzerindeki düzgün yakınsaklığa (yani tıkız yakınsaklığa) dönüşür. Böylelikle, bu dizinin limiti de holomorf olur. zaten tam olduğu için, limitin kare integrallenebilir olduğu bilinmektedir. O yüzden, limit fonksiyonu da içindedir.
  • Yukarıda bahsedilen eşitsizliğinin nin her tıkız altkümesinde sağlanması, aynı zamanda içindeki her noktası için, gönderiminin bir sürekli doğrusal operatör olduğunu da gösterir. Bir başka deyişle, içindeki her noktası için, uzayında bulunan fonksiyonların noktasında değerlendirilmesi sürekli doğrusal operatör olur. O zaman, Riesz temsil teoremi kullanılarak bu doğrusal operatör 'deki bir elemanla iç çarpım halinde yazılabilir:

Bergman çekirdeği , olarak tanımlanır. Bergman çekirdeği , değişkeninde holomorf ve değişkeninde ise tersholomorftur. Aynı zamanda aşağıdaki eşitliği sağlar.

Başka bir deyişle, içindeki her noktası için, içindeki her holomorf fonksiyonun bu çekirdekle çarpılıp integralinin alınması fonksiyonun noktasında değerlendirmesini geri verir. noktası herhangi bir nokta olabileceği için, fonksiyon çekirdek tarafından tekraradan üretilmiş olur; yani, çekirdek üreteç görevi görmektedir.

Özel bölgelerde Bergman çekirdeği

Bergman çekirdeği, karmaşık sayılar düzlemdeki bazı özel bölgelerde açık bir şekilde bilinmektedir.

  • Birim disk: ise, o zaman

  • (Gerçel kısmı pozitif olan) Yarı düzlem: ise, o zaman[1]

Kaynakça

  1. ^ Elliott, Sam J.; Wynn, Andrew (2011), "Composition Operators on the Weighted Bergman Spaces of the Half-Plane", Proceedings of the Edinburgh Mathematical Society, 54 (2), ss. 374-379, arXiv:0910.0408 $2, doi:10.1017/S0013091509001412, 6 Mart 2016 tarihinde kaynağından arşivlendi, erişim tarihi: 30 Ağustos 2024 

Ayrıca bakınız

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Morera teoremi</span> Matematik terimi

Matematiğin bir dalı olan karmaşık analizde, Giacinto Morera'nın ardından adlandırılan Morera teoremi, bir fonksiyonun holomorf olduğunu kanıtlamak için kullanılan temel bir sonuçtur. İtalyan matematikçi Giacinto Morera'nın adını taşımaktadır.

<span class="mw-page-title-main">Cauchy integral formülü</span>

Matematikte, Augustin Louis Cauchy'nin adıyla adlandırılan Cauchy integral formülü karmaşık analizde merkezi bir ifadedir. Bir disk üzerinde tanımlanmış holomorf bir fonksiyonun tamamen, fonksiyonun disk sınırındaki değerleri tarafından belirlendiğini ifade eder. Ayrıca, holomorf bir fonksiyonun tüm türevleri için formül elde etmekte de kullanılabilir. Cauchy formülünün analitik önemi karmaşık analizde "türev alma integral almaya denktir" ifade etmesidir: Bu yüzden karmaşık türevlilik, integral alma gibi, gerçel analizde olmayan düzgün limitler altında iyi davranma özelliğine sahiptir.

Matematiğin bir dalı olan karmaşık analizde Augustin Louis Cauchy ve Bernhard Riemann'a atfen Cauchy-Riemann denklemleri olarak adlandıran denklemler, türevlenebilir bir fonksiyonun açık bir kümede holomorf fonksiyon olması için gerekli ve yeterli şartları sağlayan kısmi diferansiyel denklemlerdir. Bu denklemler sistemi ilk defa Jean le Rond d'Alembert'in 1752 yılındaki çalışmasında ortaya çıkmıştır. Daha sonra, 1777 yılındaki çalışmasıyla Leonhard Euler bu sistemi analitik fonksiyonlarla ilişkilendirmiştir. Cauchy ise bu sistemi 1814'teki çalışmasındaki fonksiyonlar teorisinde kullanmıştır. Riemann'ın fonksiyonlar teorisi üzerine olan doktora tezinin tarihi ise 1851'dir.

Matematiğin bir alt dalı olan karmaşık analizde, Liouville teoremi tam fonksiyonların sınırlılığıyla ilgili temel bir teoremdir.

<span class="mw-page-title-main">Açıkorur gönderim</span>

Matematikte açıkorur gönderim ya da açıkorur dönüşüm tanımlı olduğu kümenin her noktasında yerel olarak açıları koruyan bir fonksiyona verilen addır. Bu tanımı haliyle, açıkorur gönderimlerin her zaman uzunlukları koruması ya da yönleri koruması beklenmez.

Matematikte, Hartogs teoremi, çok değişkenli karmaşık analizde birden fazla karmaşık değişkene sahip holomorf fonksiyonların analitik devamlarıyla ilgili olan ve karmaşık analizin bir değişkenli fonksiyonlar teorisinde varolmayan bir sonuçtur.

Matematik'te, Hurwitz zeta fonksiyonu, adını Adolf Hurwitz'ten almıştır, çoğunlukla zeta fonksiyonu denir. Formel tanımı için kompleks değişken s 'in Re(s)>1 ve q 'nun Re(q)>0 yardımıyla

Matematiğin bir alt dalı olan fonksiyonel analizde, doğuran çekirdekli Hilbert uzayı noktasal değerlemenin bir sürekli doğrusal fonksiyonel olduğu bir fonksiyonlar Hilbert uzayıdır. Burada, fonksiyonlar Hilbert uzayından kasıt, bahsi geçen uzayın öğelerinin fonksiyonlar olduğudur. Yani söz konusu uzay bir fonksiyon uzayıdır; bununla birlikte aynı zamanda Hilbert uzayı özelliği de taşımaktadır. Benzer bir şekilde, bu tür uzaylar doğuran çekirdekler tarafından da tanımlanabilirler. Bu terimi ilk defa ve aynı zamanda Nachman Aronszajn (1907–1980) ve Stefan Bergman (1895–1977) adlı matematikçiler 1950'de ortaya atıp geliştirmişlerdir.

Matematiğin bir alt dalı olan karmaşık analizde, Bergman uzayı kompleks koordinat uzayının bir D bölgesinde tanımlı holomorf fonksiyonlardan oluşan bir fonksiyon uzayıdır. Uzay, Stefan Bergman'ın adını taşımaktadır. Daha matematiksel bir ifadeyle, Bergman uzayı olan , üzerinde tanımlı ve p-normu sonlu olan holomorf fonksiyonlardan oluşmaktadır.

Matematiğin bir alt dalı olan karmaşık analizde Hurwitz teoremi, matematikçi Adolf Hurwitz'in ispatladığı ve bu yüzden onun ismini almış önemli bir sonuçtur. Genel bir şekilde ifade etmek gerekirse, Hurwitz teoremi karmaşık düzlemdeki bir bölge üzerinde tanımlı bir holomorf fonksiyonlar dizisinin sıfırları ile bu dizinin limiti olan fonksiyonun sıfırlarını ilişkilendirir.

Matematiğin bir alt dalı olan karmaşık analizde Blaschke çarpımı, açık birim dairede bütün sıfırlarının önceden belirli bir karmaşık dizinin elemanlarında olması için oluşturulmuş sınırlı, holomorf bir fonksiyondur.

Matematikte fonksiyon uzayı bir X kümesinden bir Y kümesine tanımlı fonksiyonların oluşturduğu kümeye verilen bir addır. Fonksiyonlar kümesi yerine fonksiyon uzayı denilmesinin nedeni matematiğin kendi içindeki uygulamalarında bu kümenin genellikle topolojik uzay veya vektör uzayı olarak ortaya çıkmasıdır.

Hiperbolik düzlemin dönüşüm grubu, genel Möbius grubunun alt grubu olup ile gösterilir. Üst yarı düzlemi koruyan bu grup Riemann küresi üzerinde tanımlıdır. nin etkisi altında hiperbolik doğrular yine hiperbolik doğrulara giderken, herhangi iki eğri arasındaki açının mutlak değerinin, hiperbolik uzunluk ve uzaklığın korunması grubun karakteristik özelliklerinden bazılarıdır. Bu özelliklerden önemli bir sonuca, hiperbolik düzlemin dönüşüm grubuyla hiperbolik yarı düzlemin izometri grubunun eşyapılı olduğuna, varmak mümkündür.

<span class="mw-page-title-main">Hilbert uzayı</span>

Matematikte Hilbert uzayı, sonlu boyutlu Öklit uzayında uygulanabilen lineer cebir yöntemlerinin genelleştirilebildiği ve sonsuz boyutlu da olabilen bir vektör uzayıdır. Daha kesin olarak, bir Hilbert uzayı, uzayın tam metrik uzay olmasını sağlayan bir uzaklık fonksiyonu üreten bir iç çarpımla donatılmış bir vektör uzayıdır. Bir Hilbert uzayı, bir Banach uzayının özel bir durumudur. Matematik, fizik ve mühendislikte sıkça kullanılmaktadır. Kuantum mekaniğiyle uyumludur. Adını David Hilbert'ten almaktadır.

Matematik'te Lp uzayı, sonlu boyutlu vektör uzayı için p-norm'un doğal bir genelleme kullanarak tanımlı fonksiyon uzayı'dır.Bazen Lebesque uzayı denir.İlk Frigyes Riesz tarafından Bourbaki grubu Bourbaki 1987 olarak tanıtılmasına rağmen,Henri Lebesgue Dunford & Schwartz 1958, III.3, adına ithaf edilmiştir. fonksiyonal analiz'de Banach uzayı'nın ve topolojik vektör uzaylarının önemli bir sınıfını Lp uzayı formu oluşturur.Lebesgue uzayının fizik, istatistik, finans, mühendislik ve diğer disiplinlerde uygulamaları var.

Matematikte, Bochner-Martinelli formülü, Cauchy integral formülünün birden fazla kompleks değişkenli fonksiyonlara yönelik genellemelerinden birisidir. Enzo Martinelli ve Salomon Bochner tarafından bağımsız olarak kanıtlanmıştır.

Matematiğin bir alt dalı olan fonksiyonel analizde, tam normlu vektör uzayılarına Banach uzayı denir. Tanımı gereği, Banach uzayı, vektör uzunluğunun ve vektörler arasındaki mesafenin hesaplanmasına vesile olan bir metriğe sahip bir vektör uzayıdır ve bu metrik uzayda herhangi bir Cauchy vektör dizisinin her zaman uzayın içinde kalan ve iyi tanımlanmış bir limiti olması anlamında tamdır.

Matematikte, karmaşık koordinat uzayı de ya da bu uzayın altkümeleri üzerinde tanımlı ve karmaşık değer alan fonksiyonların teorisine; yani, birden fazla karmaşık değişkenli fonksiyonların teorisine çok değişkenli karmaşık analiz denir.

Matematiğin bir alt dalı olan çok değişkenli karmaşık analizde Bergman-Weil formülü, çok değişkenli holomorf fonksiyonların integral temsillerinden biridir. Bergman-Weil formülü aynı zamanda Cauchy integral formülünü birde fazla karmaşık boyuta genelleştirir. Stefan Bergman ve André Weil tarafından literatüre sokulmuştur.

<span class="mw-page-title-main">Trigonometrik polinom</span> Matematiksel bir fonksiyon

Sayısal analiz ve matematiksel analiz alt alanlarında, bir trigonometrik polinom, sin(nx) ve cos(nx) fonksiyonlarının sonlu bir doğrusal kombinasyonu olup n bir veya daha fazla doğal sayı değerini alır. Gerçel değerli fonksiyonlar için, katsayılar gerçel sayılar olarak alınabilir. Kompleks katsayılar için, böyle bir fonksiyon ile sonlu bir Fourier serisi arasında bir fark yoktur.