İçeriğe atla

Benford'un savı

Logaritmik ölçek. Bu reel sayılar çizgisi üzerinde rassal olarak x için konum yaklaşık olarak 1/3 olasılıkla (10'un her üssel katinin en geniş kuşağı olan) bir 1 olacaktır.

Benford'un savı, birinci-tam sayı savı olarak da anılır. Buna göre birçok pratik gerçek hayat verileri kaynakları bir seri sayı listesi olarak verilirse en kullanılan ilk rakam (1/3 olasılıkla) 1'dir ve diğer ilk rakamlara gelince kullanılan tam sayıların değerlerinin olasılığı gittikçe azalma gösterir. Örneğin ilk sayının 9 olması olasılığı 1/20'den daha küçüktür. Bu ifadenin dayanağı, pratik gerçek dünya ölçümlerinin genellikle logaritma olarak dağıldığı ve bunun bir sonucu olarak genel olarak pratik gerçek dünyada ölçme suretiyle ele geçen değerlerin logaritmalarının dağılımının genel olarak tekdüze dağılım olduğudur.

Bu beklenmedik ve ilk bakışta pek mantıkî görünmeyen sonuç çok geniş alanda sayısal verilere uygulanabilmektedir. Örneğin elektrik kullanım faturaları, sokak adres numaraları, hisse senedi fiyatları listeleri, ölüm hadleri, nehir uzunlukları, fiziksel sabitler, matematiksel sabitler ve (doğada çok olarak gözlemlenebilen) güç savları tarafından açıklanabilen süreçler Benford'un savına uyma göstermektedir. Daha şaşırtıcı ve daha mantıksal olmaktan ayrılan taraf, bu sonucun verilerin sayı bazının değiştirilmesi halinde bile, oranlar değişmesine rağmen geçerli olmasıdır.

Bu savın adı, bu savı 1938'de ortaya koyan fizikçi Frank Benford[1] anılarak konulmuştur. Gerçekte, bu savın açıkladığı olaylar ilk defa 1881'de Simon Newcomb tarafından açıklanmıştır.[2] 1946'da L.V.Furlan aynı savı Almanca açıklamıştır.[3] Bu savın en ayrıntılı matematiksel açıklaması ve matematiksel ispatı 1988'de Theodore P. Hill yapılmıştır.[4]

Matematiksel ifade

Daha kesin olarak, Benford'un savı, başlangıç tam-sayısı olan '(eğer b≥ 2 ise) b bazında d sayısının (yani d ∈ {1, …, b − 1}) ortaya çıkmasının

logb(d + 1) − logbd = logb((d + 1)/d)

değerine orantılı bir olasılıkla olduğunu ileri sürmektedir.

Eğer d ilk tam-sayı ve p ise olasılık ise, 10 bazı ile verilen veri ilk rakamların dağılımı, Benford'un savına göre şöyle olacaktır:

dp
1 30.1%
2 17.6%
3 12.5%
4 9.7%
5 7.9%
6 6.7%
7 5.8%
8 5.1%
9 4.6%

Buna dayanılarak ilk iki tam sayı hakkında şöyle bir kural ortaya atılabilir: Her veri için ilk iki rakam ihtiva eden blokun meydan çıkma olasılığı 'n ye eşittir ve n = 10, …, 99

log100(n + 1) − log100(n)

olur. İlk sıfır içermeyen üç rakamdan oluşan blokların ve daha uzun olan blokların olasılıkları da benzer şekilde ortaya çıkartılabilir. (Gerçekten, b bazında p tane ilk rakam Benford'un savı sonucu bp bazında olan birinci ilk rakamlar Benford'savının sonucunu hemen takip ederler.)

Bu savın neyi açıkladığı şöyle de anlatılabilir: Herhangi bir rakam 10'un bir üssü ve bir m (eğer 1≤m<10) değerde bir mantis (mantissa) ile çarpımı olarak yazılabilir. Benford'un savı doğru ise verinin mantislerinin dağılımı bir 1/x dağılımı gösterecektir. Birçok kişi bu prensipin sonucu olarak eldeki (normalize edilmeyen) veri rakamların dağılımın da aynı dağılımı göstermesi gerektiğine yanlış olarak inanmaktadırlar. Benford'un savı yalnızca mantis dağılımının (1'den 10'a sınırlanmış olarak) Benford savına göre dağılmasına ilişkilidir.

Bu dağılımın ortaya çıkmasının sürpriz yaratmaması gereği [5] verilerin logaritmalarının geçerlilik alanlarına bakışla açıklanabilir. Orijinal veri dağılımının bir mantis dağılımına indirgenmesi verimizin logaritma değerinin kesirsel tarafının dağılımının incelenmesine dönüştürülmüştür. Bu dağılımın genişliği 0 ile 1 arasıdır. Herhangi bir dağılımı bu türlü değiştirmenin sonucunda verinin kesirsel tarafının yaklaşık olarak bir tekdüze dağılım ortaya çıkaracağı kolayca görülebilir. (Çünkü dağılımın kuyruğunun eğimleri 0-1 arasında eğim değerlerine dönüştürülmekte ve alttaki ve üstteki kuyruktaki eğimler birbirini elimine etmektedirler.) Logaritma değerinin kesirsel tarafının yaklaşık tekdüze dağılımı göstermesi doğrudan doğruya orijinal verilerin yaklaşık 1/x dağılımı göstermesinin karşılığıdır. Bu doğal olarak, verilerin 1 ile 10 arasında bulunması olabilirliğinin 1000 ile 10000 arasında olmasından daha büyük olmasına bakmadan uygulanabilir.

Açıklama

Bu savın açıklaması, eğer ilk tam sayıların belirli bir dağılımı gerçekte bulunursa bu dağılımın ölçme birimlerinden bağımsız olması gerekliliğine dayandırılır. Örneğin, eğer uzunluk ölçülerimizi santimetreden milimetreye çevirirsek (yani bir sabit 1/10 ile çarpım işlemi uygulanırsa), dağılımın değişmemesi gerekir - yani dağılım ölçekle değişmez. Bu gerçeğe uyan tek istatistik dağılım logaritması tekdüze olan dağılımdır.

Fiziksel sabitler listesinde bulunan ilk tam sayıların frekansının Benford'un savı dağılımına karşı aynı grafikte gösterilmesi.

Örneğin, herhangi iki nesne arasındaki uzaklığın sıfır olmayan ilk tam sayısı için dağılım, bunun santimetre, milimetre, hatta inç veya yarda biriminde/ölçeğinde olmasına bakmadan, aynı şeklini koruyacaktır. Yani eğer ilk tam sayılar için belirlenen bir dağılım varsa, o dağılım verinin ne ölçekte olduğuna hiç dayanmadan uygulanabilecektir.

Daha matematiksel deyimle, X bir rassal değişken ise ve bu değişken olasılığı herhangi bir pozitif tam sayı olan x'e eşit olması (eğer s>1 ise) ss değerine oranlıdır; yani

.

Bu oran için sabit 1/ζ(s) olur ve burada ζ Riemann zeta fonksiyonu olur (bakın zeta dağılımı). X içindeki ilk tam sayının n olmasının olasılığı, s değeri 1'e yaklaştıkça

log10(n + 1) − log10(n)

ifadesine yaklaşır.

Benford'un savının şeklinin çok daha kesinlikle açıklanması eğer sayıların "logaritma" değerlerinin ayrık tekdüze dağılım gösterdiği varsayımının gerçekte doğruluğu ile mümkün olabilir. Bu demektir ki bir sayının 100 ile 1000 arasında (yani logaritma ile 2 ile 3 arasında) olması, 10,000 ile 100,000 (logaritma ile 4 ile 5 arası) olması ile aynı olasılıktadır. Birçok veri sayılar, özellikle gelirler, hisse senedi fiyatları, diğer borsa fiyatları gibi üstel büyüme gösteren değişkenler için bu pratik gerçeklere uygun bir varsayım olacaktır.

Bunun nasıl ortaya çıktığı için bir basit örnek verilebilir. Bir nesne miktarının üstel bir oranda büyüme göstermesi demek bu artış haddinin bir sabit olduğunu kabul etmektir. Eğer miktarın iki misline büyümesi bir yıl gerektiriyorsa, gelecek yıl da tekrar iki misli büyüme gösterecek demektir ve bu şekilde 3. yılda da ve diğer yıllarda iki kat artma devam edip duracağı varsayılıdır. Düşünelim; her yıl iki misli artış gösteren bir nesneyi ölçmek için başlama anının sayının 100'e geldiği zaman olduğunu kabul edelim. Bütün birinci yıl sayısının ilk rakamı 1 olacaktır. İkinci yıl için ilk rakam ancak ilk yedi ay için 2 olacaktır ve diğer beş ay 3 olacaktır. Üçüncü yılda ise sayının ilk rakamı 4, 5, 6 ve 7'yi aşacak ve takip eden rakamlardan daha çok uzaklaşmaya başlayacaktır. Dördüncü yılın hemen başlarında ilk rakam 8 ve 9 değerlerini geçecektir ve miktarın değeri 1000'i aştığı zaman bu süreç yeniden başlayacaktır.

Bu örnekten kolayca görülmektedir ki eğer miktar değeri bir yıl içinde rassal zamanlarda örnek alıp ölçülürse, örnek ölçülmesinde bulunan en olabilir ilk rakam değeri 1 olacaktır. Bunu takip eden ölçmelerde değer için daha büyük ilk rakamlar bulunması, değerin daha yüksek ilk rakamlara geçiş göstermesi dolayısıyla, çok daha az olabilirlilikte bulunacaktır.

Buna göre üstel olarak büyüme gösteren miktarların ölçülmesi sonucu ele geçirilen tabloların Benford'un savı kurallarına uymaları çok imkân dahilindedir. Ancak şunu da hatırlamalıdır ki birçok halde üstel büyüme şekli göstermeyen sayılar için bile Benford'un savı uygulanabilir.

Şuna dikkatin çekilmesi gerekir ki eğer eldeki sayılar çok değişik çeşitli dağılımlardan ortaya çıkartılmışlarsa, örneğin zeka testi sonuçları, kişilerin boyları gibi değişik normal dağılım gösteren değişkenlerse, bu sav geçerli olmayacaktır. Fakat, bu rakamlar ana kaynaktan değil diğer sayılarda karışık diğer bir kaynaktan elde edilmişlerse (örneğin anket sonuçlarını 'karışık' olarak veren bir makaleden) Benford'un savı tekrar geçerli olmaya başlayacaktır. Hill [1998] matematikle ispat etmiştir ki eğer bir araştırmacı "rassal" olarak bir sıra olasılık dağılımı seçerse ve sonra da seçtiği dağılıma uyan bir sayı seçerse, sonuç olarak ortaya çıkan sayılar için Benford'un savı uygulanabilir.

Uygulamalar ve sınırlamalar

1972'de Hal Varian hazırladığı bir yazıda bu savın bir ülke çapında planlama projesi için sunulan sosyo-ekonomik verilerin listesinde bir hilebazlık yapılıp yapılmadığı hakkında incelemeye baz olabileceğini iddia etmiştir.[6] Bu açıklamaya göre uydurma istatistik yaratıcılarının kullandıkları tek sayılar bir tekdüze dağılıma yaklaşık olacaktır. Böylece kullanılan verilerin ilk rakamının frekans dağılımı ile Benford'un savına göre çıkartılan beklenen bir dağılımı karşılaştırılması herhangi bir uyuşmazlık gösteren veriyi ortaya çıkaracaktır. Sonuç olarak bu uyuşmazlık gösteren verinin uydurma olabileceği çok mümkün görülecektir; fakat bu istatistiksel sonuç zayıf bir delil olduğu için mümkün hilebazlığın ispat edilmesi için daha ince ve detaylı inceleme gerekecektir.

Bu görüş benzeri bir çalışma J.Nye ve C.Moul (2007) tarafından uluslararası makroekonomik verilerin incelenmesi ile yapılmıştır.[7] Bu çalışmada Dünya Bankası tarafından toplanan uluslararası gayrisafi millî hasıla istatistikleri incelenmiş ve çok büyük bir kısmının bu sava uygun olduğu görülmüştür. Ancak küçük bir sayıda ülkeler için, genellikle gelişmekte olan ülkeler için, gayrisafi milli hasıla istatistiklerinin bu sava uymadığı ortaya çıkmıştır. Bu sonuç asıl orijinal sayıların bürokratik ve politik karışım ile değiştirildiğine bir inanılabilir gösterge olduğu iddiasını ortaya çıkartmıştır.

Son zamanlarda Benford'un savının bu türde araştırma için diğer pratik kullanış alanları olacağı anlaşılmıştır. Bunlar arasında büyük firmaların fiyatlama stratejilerini tekelcilik yapmadıklarını savunmak için sundukları fiyat listeleri, yıllık ve diğer periyodik muhasebe hesapları sunuları, vergiden düşülebilen masraflar için sunulan veriler, hasar sigortası talepleri, yeni ilaçlar için kliniksel denemeler, seçim masrafları bildirileri,[8] milli seçim sonuçları gibi konularda incelemelerin yapılması mümkün görülmektedir ve hatta bu konu türünde bazı pratik araştırmaların sonuçları bilimsel eser olarak yayınlanmıştır.[9]

Ancak, bu tür uygulamaların sonuçlarını incelemek dikkat gerektirmektedir. Bir grup pratik gerçek hayat örneği bu sava uygunluk göstermeyebilir; çünkü kullanılan veri kategorisinin içindeki sayıların dağılımı rassal olarak dağılımın çarpık kuyruğunda bulunmuş olabilirler.

Tarih

Benford'un savının açıkladığı gerçeğin keşfedilmesi 1881'e kadar gider. O tarihte bir Amerikan astronomu olan Simon Newcomb astronomi hesapları yaparken kullandığı logaritma cetvellerini ihtiva eden kitapların başlangıcındaki sayfaların sonraki sayfalardan daha çok kullanılması dolayısı ile zarar gördüğünü gözlemlemiştir. Bu çok kullanma belirtileri sırf sayfaların çok kullanılması şeklinde ise sadece sayfa uçlarında eski izleri görünmesi beklenmekteydi; halbuki herhangi bir sayfayı kullananların sayfanın içindeki sayı satırlarına da baktıkları, satır takip ederken bıraktıkları parmak izleri ile anlaşılmıştır.

Ancak bu hikâyenin biraz abartılı olduğu gerçektir. Çünkü logaritma cetveli kitapları sadece logaritma değerleri değil, antilogaritmaları ve çok kere üsler, kökler, sinüsler, kosinüsler ve benzeri trigonometri cetvellerini de ihtiva etmektedir. Bununla beraber, Newcomb'un yayımladığı makale birinci rakam dağılımları hakkında ilk açıklamayı ihtiva etmekte ve ikinci rakam dağılımı hakkındaki bilgileri de kapsamaktadır. Newcomb'un yazısında, N değerde herhangi bir sayının birinci rakamının log(N+1) değerde olacağı öne sürülmektedir.

Aynı gerçek 1938'de daha geniş alanlarda bulunan veri gruplarını inceleyen fizikçi Frank Benford tarafından da tekrar keşfedilmiştir. 1996'da Ted Hill bu sonucun karışık dağılımlara da uygulanabileceğini ispat etmiştir.

Popüler kültürde kullanış

Benford'un savı Amerikan televizyon şirketi CBSin hazırladığı Numb3rs adlı bir televizyon serisinin The Running Man (Koşan Adam) adlı bölümü için temel kurgu aleti olarak kullanılmıştır.

Ayrıca bakınız

  • Adlî muhasebe
  • Kesin hesap kontrolü

Kaynakça

  1. ^ Frank Benford (1938 Mart), "The law of anomalous numbers", Proceedings of the American Philosophical Society C.78 No.4 say 551–572 [1]
  2. ^ Simon Newcomb, (1881) "Note on the Frequency of Use of the Different Digits in Natural Numbers (Doğal Numaraların Değişik Sayısal İfadesinin Kullanış Sıklığı Hakkında Not)" American Journal of Mathematics C.4 No.1/4 say.39–40 [2]
  3. ^ L.V.Furlan (1946), "Die Harmoniegesetz der Statistik: Eune Untersuchung uber die metrische Interdependenz der soziale Erscheinungen" (1948) Reviewed in Journal of the American Statistical Association C.43(Haziran) No.242 say. 325–328 [url=http://www.jstor.org/view/01621459/di985813/98p0504n/0?frame=noframe&userID=8614251252@york.ac.uk/01cc99331258e7114ffd0f8cf&dpi=3&config=jstor]
  4. ^ Theodore P. Hill, (1998 Temmuz-Agustos), "The first digit phenomenon" American Scientist C.86 say.358 [3] 17 Mayıs 2005 tarihinde Wayback Machine sitesinde arşivlendi.
  5. ^ "Arşivlenmiş kopya". 26 Temmuz 2008 tarihinde kaynağından arşivlendi. Erişim tarihi: 18 Şubat 2008. 
  6. ^ Hal Varian (1972), "Benford's law" American Statistician C.26 say.65
  7. ^ John Nye ve Charles Moul, (2007) "The Political Economy of Numbers: On the Application of Benford's Law to International Macroeconomic Statistics" The B.E. Journal of Macroeconomics C.7(1) Makale no.17 [url = http://www.bepress.com/bejm/vol7/iss1/art17/ 20 Şubat 2008 tarihinde Wayback Machine sitesinde arşivlendi.]
  8. ^ Wendy Cho ve Brian Gaines (2007 Augustos), "Breaking the (Benford) Law: statistical fraud detection in campaign finance" The American Statistician C.61 No.3 say.218–223 doi = 10.1016/j.ijresmar.2005.09.002
  9. ^ Tarek el-Sehity, Erik Hoelzl ve Erich Kirchler (2005) "Price developments after a nominal shock: Benford’s Law and psychological pricing after the euro introduction" International Journal of Research in Marketing C.22 No.4 (Aralik) say.471–4 [url=http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V8R-4HDP6TR-1&_user=10&_coverDate=12%2F31%2F2005&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=23171667aea48646882b2ec73d590b5c 10 Ocak 2008 tarihinde Wayback Machine sitesinde arşivlendi.]

Dış bağlantılar

Bilgisayarda bulunan kullanma aletleri ve yazılımlar

İnternet siteleri

İlgili Araştırma Makaleleri

Sayı, sayma, ölçme ve etiketleme için kullanılan bir matematiksel nesnedir. En temel örnek, doğal sayılardır. Sayılar, sayı adı (numeral) ile dilde temsil edilebilir. Daha evrensel olarak, tekil sayılar rakam adı verilen sembollerle temsil edilebilir; örneğin, "5" beş sayısını temsil eden bir rakamdır. Yalnızca nispeten az sayıda sembolün ezberlenebilmesi nedeniyle, temel rakamlar genellikle bir rakam sisteminde organize edilir, bu da herhangi bir sayıyı temsil etmenin organize bir yoludur. En yaygın rakam sistemi Hint-Arap rakam sistemidir, bu sistem on temel sayısal sembol, yani rakam kullanılarak herhangi bir negatif olmayan tam sayının temsil edilmesine olanak tanır. Sayılar sayma ve ölçme dışında, etiketlerde, sıralamada ve kodlarda kullanılmak için de sıklıkla kullanılır. Yaygın kullanımda, bir rakam ile temsil ettiği sayı net bir şekilde ayrılmaz.

Matematikte reel sayılar kümesi, Fransızca réel “gerçek” den gelmektedir. Oranlı sayılar kümesinin evrim sürecinden elde edilen bir varsayım kombinasyonudur. Reel sayılar kümesi sembolüyle gösterilir.

<span class="mw-page-title-main">Rakam</span>

Rakam, sayıları yazılı olarak göstermeye yarayan sembollerden her biri. Pek çok dil ve kültürde kullanılan Arap kökenli rakamlar şunlardır:

e sayısı veya Euler sayısı, matematik, doğal bilimler ve mühendislikte önemli yeri olan sabit bir reel sayı, doğal logaritmanın tabanı. e sayısı aşkın bir sayıdır, dolayısıyla irrasyoneldir ve tam değeri sonlu sayıda rakam kullanılarak yazılamaz. Yaklaşık değeri şöyledir:

İstatistik bilimi için mod bir veri kümesi içinde en sık görülen değerdir. Tepedeğer olarak da adlandırılır. Bazı kullanım alanlarında, özellikle eğitim alanında, örnek veriler çok kere puan olarak anılmakta ve örnek mod değerine ise mod puanı adı verilmektedir.

Rassal değişken kavramının geliştirilmesi ile, sezgi yoluyla anlaşılan şans kavramı, soyutlaştırarak teorik matematik analiz alanına sokulmuş ve bu geliştirilen matematik kavram ile olasılık kuramı ve matematiksel istatistiğin temeli kurulmuştur.

<span class="mw-page-title-main">Binom dağılımı</span>

Olasılık kuramı ve istatistik bilim kollarında, binom dağılımı n sayıda iki kategori (yani başarı/başarısızlık, evet / hayır, 1/0 vb) sonucu veren denemelere uygulanır. Araştırıcının ilgi gösterdiği kategori başarı olarak adlandırılır. Bu türlü her bir deneyde, bağımsız olarak, başarı (=evet=1) olasılığının p olduğu (ve yalnızca iki kategori sonuç mümkün olduğu için başarısızlık olasılığının 1 - p olduğu) bilinir. Bu türlü bağımsız n sayıda denemeler serisi içinde elde edilen başarı sayısının ayrık olasılık dağılımı binom dağılım olarak tanımlanır. Bir binom dağılım sadece iki parametre ile, yani n ve p ile tam olarak tanımlanır. Matematik notasyon olarak bir rassal değişken X binom dağılım gösterirse şöyle ifade edilir:

X ~ B(n,p)

Bir olasılık dağılımı bir rassal olayın ortaya çıkabilmesi için değerleri ve olasılıkları tanımlar. Değerler olay için mümkün olan tüm sonuçları kapsamalıdır ve olasılıkların toplamı bire eşit olmalıdır. Örneğin, bir rassal olay olarak madeni paranın tek bir defa havaya atılıp yere düşmesi ele alınsın; değerler 'yazı' veya 'tura' veya bunlar isimsel değişken ölçeğinde ifade edilirse 0 (yazı) veya 1 (tura) olur; olasılıklar ise her iki değer için ½ olacaktır. Böylece madeni bir paranın tek bir defa atılma olayı için iki değer ve ilişkili iki olasılık bu rassal olayın olasılık dağılımı olur. Bu dağılım ayrık olasılık dağılımıdır; çünkü sayılabilir şekilde ayrı ayrı sonuçlar ve bunlara bağlı olan pozitif olasılıklar vardır.

<span class="mw-page-title-main">Tekdüze dağılım (ayrık)</span>

Ayrık tekdüze dağılım, olasılık kuramı ve istatistik bilim kollarında, bir rassal değişken için belirli bir alt ve üst sınır tam sayı arasında mümkün olan bir sıra tam sayı sonuç değerlerin hepsinin eşit ölçüde olasılık göstermesi özelliğini taşıyan ayrık olasılık dağılımıdır.

<span class="mw-page-title-main">Zeta dağılımı</span>

Olasılık kuramı ve istatistik bilim kollarında, zeta dağılımı bir ayrık olasılık dağılımıdır. Eğer X s parametresi ile zeta dağılımı gösteren bir bir rassal değişken ise, Xin k tam sayısı değerini almasının olasılığı şu olasılık kütle fonksiyonu ile belirtilir:

<span class="mw-page-title-main">Tekdüze dağılım (sürekli)</span> Özel olasılık dağılımı

Sürekli tekdüze dağılım (İngilizce: continuous uniform distribution) olasılık kuramı ve istatistik bilim dallarında, her elemanı, olasılığın desteklendiği aynı büyüklükteki aralık içinde bulunabilir, her sürekli değer için aynı sabit olasılık gösteren bir olasılık dağılımları ailesidir. Desteklenen aralık iki parametre ile, yani minimum değer a ve maksimum değer b ile, tanımlanmaktadır. Bu dağılım kısa olarak U(a,b) olarak anılır.

Olasılık teorisi ya da ihtimaliyet teorisi rastgele olayların analizi ile ilgilenen bir matematik bilim dalıdır. Olasılık teorisinin ana ögeleri rassal değişkenler, saf rassal süreçler, olaylar olarak sayılabilir. Bunlar ya tek olarak ortaya çıkan veya bir zaman dönemi içinde gelişerek meydana gelen, ilk görünüşü rastgele bir şekilde olan deterministik olmayan olayların veya ölçülebilir miktarların matematiksel soyutlamalarıdır. Bir madeni parayı yazı-tura denemesi için havaya atmak veya bir zarı atmak ile ortaya çıkan sonuç ilk bakışta rastgele bir olay olarak görülebilirse bile eğer birbirini takip eden rastgele olaylar tekrar tekrar ortaya çıkartılırsa incelenebilecek ve tahmin edilebilecek belirli bir istatistiksel seyir takip ettikleri görülecektir. Bu türlü olaylar ve sonuçların seyirlerini betimleyen iki temsilci matematiksel sonuç büyük sayılar yasası ve merkezsel limit teoremidir.

<span class="mw-page-title-main">Ayrık olasılık dağılımları</span>

Olasılık kuramı içinde bir olasılık dağılımı eğer bir olasılık kütle fonksiyonu ile karakterize edilmiş ise ayrık olarak anılır. Böylelikle bir rassal değişken olan X için dağılım ayrık ise o zaman X bir ayrık rassal değişken olarak bilinir. Bu halde

Olasılık kuramı içinde bir olasılık dağılımı, eğer yığmalı dağılım fonksiyonu bir sürekli fonksiyon ise dağılım da sürekli olarak anılır. Bu demektir ki incelenmekte olan dağılımı gösteren X rassal değişkeni için; tüm reel sayı olan a için

Pr[X = a] = 0

Anderson-Darling sınaması, istatistik bilim dalında, bir parametrik olmayan istatistik sınaması olup örneklem verilerinin belirli bir olasılık dağılımı gösterip göstermediğini sınamak için, yani uygunluk iyiliği sınaması için, kullanılmaktadır. Bu sınama ilk defa 1952'de Amerikan istatistikçileri T.W.Anderson Jr. ile D.A.Darling tarafından yayınlanmıştır. Bu sınama Kolmogorov-Smirnov sınamasının değiştirilmesi ve olasılık dağılımının kuyruklarına daha çok ağırlık verilmesi ile ortaya çıkartılmıştır.

İstatistik bilim dalında, Kolmogorov-Smirnov (K-S) sınaması parametrik olmayan istatistik olup Andrey Kolmogorov ve Nikolai Smirnov adlarındaki iki Sovyet bilim insanı tarafından oluşturulmuştur.

<span class="mw-page-title-main">Napier'in kemikleri</span> John Napier tarafından icat edilmiş matematiksel aygıt

Napier'in kemikleri, John Napier tarafından oluşturulan bir abaküstür. Pratik olarak çarpma, bölme ve karekök alma işlemleri için kullanılabilir. Napier, bu eserini Rabdology adıyla 1617'nin sonunda, İskoçya Edinburgh'da yayımlamıştır. Napier'in kemikleri, Napier'in adıyla ilişkili olan logaritma ile aynı şey değildir.

Pearson ki-kare testi nicel veya nitel değişkenler arasında bağımlılık olup olmadığının, örnek sonuçlarının belirli bir teorik olasılık dağılımına uygun olup olmadığının, iki veya daha fazla örneğin aynı anakütleden gelip gelmediğinin, ikiden fazla anakütle oranının birbirine eşit olup olmadığının ve çeşitli anakütle oranlarının belirli değere eşit olup olmadığının araştırılmasında kullanılır. İstatistik biliminin çıkarımsal istatistik bölümünde ele alınan iki-değişirli parametrik olmayan test analizlerinden olan ve ki-kare dağılımı'nı esas olarak kullanan ki-kare testlerinden en çok kullanılanıdır. İngiliz istatistikçi olan Karl Pearson tarafından 1900'da ortaya çıkartılmıştır.

Medyan bir anakütle ya da örneklem veri serisini küçükten büyüğe doğru sıraladığımızda, seriyi ortadan ikiye ayıran değere denir. İstatistiğin bir alt dalı olan betimsel istatistikde medyan bir merkezsel konum ölçüsü kabul edilir.

<span class="mw-page-title-main">Matematiksel tablolar</span>

Matematiksel tablolar, çeşitli bağımsız değişkenlerle yapılan bir hesaplamanın sonuçlarını gösteren sayı listeleridir. Trigonometrik fonksiyonların tabloları, antik Yunanistan ve Hindistan'da astronomi ve göksel seyir uygulamaları için kullanıldı. Tablolar, hesaplamaları basitleştiren ve büyük ölçüde hızlandıran elektronik hesap makinelerinin fiyatlarının düşerek kolay erişilir hale gelişlerine dek yaygın olarak kullanıldı. Logaritma tabloları ve trigonometrik fonksiyonlar matematik ve fen ders kitaplarında yaygındı ve çok sayıda uygulama için özel tablolar yayınlandı.