İçeriğe atla

Belirsizlik ilkesi

Belirsizlik ilkesi, Heisenberg belirsizlik ilkesi ya da Belirlenemezlik ilkesi olarak da bilinir.

1927'de Alman fizikçi Werner Heisenberg tarafından ortaya atılan ve bir cismin belirli bir andaki konumu ile momentumunun (Kütlesiyle hızının çarpımının) aynı anda ve kesin değerlerle kuramsal olarak bile ölçülemeyeceğini öne süren ilke. Belirsizlik ilkesi, kuantum mekaniğini klasik fizikten ayıran temel özelliklerin başında gelir ve klasik fiziğin tanımladığı günlük olaylar bu ilkeye ilişkin hiçbir ipucu vermez. Örneğin bir otomobilin belli bir anda bulunduğu yeri ölçmek kolaydır ve bu ölçümlere kesin gözüyle bakılabilir; çünkü bu ilkede söz konusu edilen belirsizlikler, elle tutulup gözle görülebilen her nesne için olduğu gibi otomobil içinde ölçülemeyecek kadar küçüktür. Bu kurala göre, bir cismin ve momentumundaki belirsizliklerin çarpımı, olağan değerlerden çok daha küçük olan bir fiziksel niceliğe ya da sabite ( joule-saniye; yani h, Planck sabiti olmak üzere, h/2 π niceliğinin değeri) eşit ya da bu nicelikten daha büyük olmalıdır. Bu nedenle, bu belirsizliklerin çarpımı yalnızca kütleleri ve boyutları olağanüstü küçük olan atomlar ve temel parçacıklar için büyük önem taşır.

Elektron gibi bir temel parçacığın hızını, daha doğrusu momentumunun kesin değeriyle ölçmeye kalkışmak, bu parçacığın yerini, önceden kestirilemeyecek biçimde değiştirir; bu nedenle, parçacığın hızını (momentumunu) ölçerken aynı anda yerini de belirlemeye çalışmanın hiçbir anlamı kalmaz. Ölçü aletlerinin, ölçme tekniklerinin ya da gözlemcinin yetersizliğiyle hiçbir ilgisi olmayan bu sonuç, doğada, atomaltı boyutlardaki parçacıklar ve dalgalar arasında var olan yakın bağlantıdan doğar.

Louis de Broglie'nin göstermiş olduğu gibi, her parçacığa bir dalga eşlik eder; başka bir deyişle her parçacık bir dalga davranışı ve özelliği gösterir. Parçacığın, kendisine eşlik eden dalga içinde bulunma olasılığının en yüksek olduğu yerler, dalga genliğinin en büyük olduğu noktalardır. Ne var ki, eşlik eden dalganın genliği ne kadar büyük olursa, ilgili parçacığın momentumuyla hemen hemen özdeş olan ve momentumunu belirleyen dalga boyunu tanımlamak da o kadar güçleşir; çünkü bölge daraldıkça daha çok sayıda dalga boyu bileşeni gerekir. Bu nedenler çok dar bir alana sıkıştırılmış olan bir dalganın eşlik ettiği parçacığın yeri bellidir, ama momentumu için sonsuz sayıda değer bulunabilir. Oysa, tek bir dalga boyuna sahip bir dalga aynı genlikle bütün uzayı kaplayacağından, bu dalganın eşlik ettiği parçacığın hızı (momentumu) hemen hemen kesin olarak belirlenebilir, ama yeri hiçbir zaman bilinemez; daha doğrusu böyle bir parçacık herhangi bir yerde bulunabilir. Yer ile momentumun, yalnız klasik fizikte değil kuantum mekaniğinde de eşlenik olduğu göz önüne alınarak bu ilke genişletilirse, gözlenebilir bir büyüklüğün oldukça önemli bir belirsizliğe yol açar. Bu durum ve genel tanımıyla belirsizlik ilkesi, örneğin enerji ve zaman gibi tüm eşlenik değişken çiftleri için geçerlidir: Enerji ölçümünde söz konusu olan belirsizlik ile ölçümün yapıldığı zaman aralığındaki belirsizliğin çarpımı gene h/2π'ye en azından eşittir. Kararsız bir atom ya da atom çekirdeğinin, daha kararlı bir duruma geçmek için atması gereken enerji miktarının belirsizliği ile kararsız durumda geçirdiği ortalama sürenin belirsizliği arasında da aynı bağıntı söz konusudur.

Matematiksel Detay

Heisenberg bağıntısını ortaya koyduğunda, argümanı yalnızca nitel örneklere dayanıyordu. Bağıntılarının genel ve kesin bir türevini vermemiştir. Aslında, δq belirsizliklerinin bir tanımını bile vermemiştir. vb. bu ilişkilerde ortaya çıkmaktadır.

Elbette bu, o makalenin ilan edilen hedefiyle, yani basit deneyler için kuantum mekaniğinin niteliksel olarak anlaşılmasını sağlamakla tutarlıydı. Belirsizlik ilişkilerinin matematiksel olarak ilk kesin formülasyonu Kennard'a aittir. Kennard, 1927 yılında, tüm normalleştirilmiş durum vektörleri için |ψ⟩ aşağıdaki eşitsizlik geçerlidir:

Burada, ΔψP ve ΔψQ durum vektöründeki konum ve momentumun standart sapmalarıdır |ψ⟩

yani,

burada ⟨⋅⟩ψ=⟨ψ∣⋅∣ψ⟩ durumundaki beklenti değerini ifade eder |ψ⟩. Eşdeğer olarak ψ(q) dalga fonksiyonunu kullanabiliriz. ve Fourier dönüşümü:

yazmak için

Bu eşitsizlik Robertson (1929) tarafından genelleştirilmiş ve tüm gözlemlenebilirler (öz-eşlenik operatörler) için A ve B:

burada [A, B]:= AB-BA komütatörü gösterir.

Heisenberg'in orijinal yarı niceliksel formülasyonunun aksine, yukarıdaki eşitsizlikler kesin olma erdemine sahip olduğundan, bunları Heisenberg'in bağıntılarının tam karşılığı olarak görmek caziptir. Aslında, Heisenberg'in kendi görüşü de böyleydi. Chicago Dersleri'nde Kennard'ın bağıntı türetimini sunmuş ve "bu ispatın matematiksel içerik olarak yarı niceliksel argümanından hiç farklı olmadığını", tek farkın şimdi "ispatın tam olarak gerçekleştirilmesi" olduğunu iddia etmiştir.

Ancak Kennard'ın eşitsizliği ile Heisenberg'in önceki formülasyonu arasında hem statü hem de amaçlanan rol açısından bir fark olduğunu belirtmek faydalı olabilir. Burada tartışılan eşitsizlikler ampirik olgu ifadeleri değil, kuantum mekaniksel formalizmin teoremleridir. Bu nedenle, sezgisel içeriğini açıklamaktan veya bu formalizmin geçerliliği için "alan" veya "özgürlük" yaratmaktan ziyade, bu formalizmin ve özellikle de komütasyon ilişkisinin geçerliliğini varsayarlar. En iyi ihtimalle, yukarıdaki eşitsizlikleri, formalizmin Heisenberg'in ampirik ilkesiyle tutarlı olduğunu göstermek olarak görmek gerekir.

ile arasında kayda değer ikinci bir fark daha vardır. Heisenberg "belirsizlikler" δp için genel bir tanım vermemiştir. Bununla beraber δq. Bunlar hakkında yaptığı en kesin açıklama, bunların "ortalama hata gibi bir şey" olarak alınabileceğiydi. Düşünce deneyleri tartışmalarında, o ve Bohr belirsizlikleri her zaman eldeki deneyle ilgili olan bazı parametreleri seçerek duruma göre ölçerdi. Buna karşılık, eşitsizlikler ve "belirsizlik" ölçüsü olarak tek bir spesifik ifade kullanırlar: standart sapma. O zamanlar, bu ifadenin hata teorisinde ve istatistiksel dalgalanmaların tanımlanmasında iyi bilindiği ve yaygın olarak kullanıldığı göz önüne alındığında, bu seçim doğal değildi. Ancak, bu seçimin belirsizlik ilişkilerinin genel bir formülasyonu için uygun olup olmadığı konusunda çok az tartışma vardı ya da hiç yoktu. Standart sapma, belirli bir durumdaki bir gözlemlenebilirin bir dizi ölçümündeki yayılmayı veya beklenen dalgalanmaları yansıtır. Bu fikri, bir mikroskobun çözümleme gücü gibi bir ölçümün "yanlışlığı" kavramıyla ilişkilendirmek hiç de kolay değildir. Aslında, Heisenberg Kennard'ın eşitsizliğini belirsizlik ilişkisinin kesin formülasyonu olarak almış olsa da, o ve Bohr düşünce deneylerine ilişkin birçok tartışmalarında hiçbir zaman standart sapmalara dayanmamışlardır ve aslında bu tartışmaların standart sapmalar açısından çerçevelenemeyeceği gösterilmiştir (Uffink ve Hilgevoord 1985; Hilgevoord ve Uffink 1988).

Titreşim sayısı ve enerji niceliği az Dalga boyu uzun Bekleme süresi uzun Belirsizlik büyük

Titreşim sayısı ve enerji niceliği çok Dalga boyu kısa Bekleme süresi kısa Belirsizlik küçük

Enerji niceliği ne denli azsa, aynı oranda dalga boyuyla bağlantılı olarak bekleme süresi uzar ve ölçülen zaman belirsizleşir. Tersine; Enerji niceliği ne denli çoksa, aynı oranda dalga boyuyla bağlantılı olarak bekleme süresi azalır ve ölçülen zamanın belirsizliği azalır.

Kaynakça

İlgili Araştırma Makaleleri

Adını İngiliz fizikçi Paul Dirac'tan alan spinli ve göreli kuantum mekaniği denklemi,

Schrödinger denklemi, bir kuantum sistemi hakkında bize her bilgiyi veren araç dalga fonksiyonu adında bir fonksiyondur. Dalga fonksiyonunun uzaya ve zamana bağlı değişimini gösteren denklemi ilk bulan Erwin Schrödinger’dir. Bu yüzden denklem Schrödinger denklemi adıyla anılır. 1900 yılında Max Planck'ın ortaya attığı "kuantum varsayımları"nın ardından, 1924'te ortaya atılan de Broglie varsayımı ve 1927'de ortaya atılan Heisenberg belirsizlik ilkesi bilim dünyasında yeni ufukların doğmasına sebep olmuştur. Bu gelişmeler Max Planck'ın kuantum varsayımları ve Schrödinger'in dalga mekaniği ile birleştirilerek kuantum mekaniğini ortaya çıkarmıştır.

<span class="mw-page-title-main">Dalga fonksiyonu</span>

Kuantum fiziğinde dalga fonksiyonu izole bir kuantum sistemindeki kuantum durumunu betimler. Dalga fonksiyonu karmaşık değerli bir olasılık genliğidir ve sistem üzerindeki olası ölçümlerin olasılıklarının bulunmasını sağlar. Dalga fonksiyonu için en sık kullanılan sembol Yunan psi harfidir ψ ve Ψ.

Klein-Gordon Denklemi, Schrödinger denkleminin bağıl/göreli (relativistik) olan versiyonudur ve atomaltı fizikte kendi ekseni etrafında dönmeyen parçacıkları tanımlamada kullanılır. Oskar Klein ve Walter Gordon tarafından bulunmuştur.

<span class="mw-page-title-main">Kuantum mekaniği</span> atom altı seviyede çalışmalar yapan bilim dalı

Kuantum mekaniği veya kuantum fiziği, atom altı parçacıkları inceleyen bir temel fizik dalıdır. Nicem mekaniği veya dalga mekaniği adlarıyla da anılır. Kuantum mekaniği, moleküllerin, atomların ve bunları meydana getiren elektron, proton, nötron, kuark, gluon gibi parçacıkların özelliklerini açıklamaya çalışır. Çalışma alanı, parçacıkların birbirleriyle ve ışık, x ışını, gama ışını gibi elektromanyetik ışınımlarla olan etkileşimlerini de kapsar.

Kuantum mekaniği ve Kuantum alan kuramı içinde yayıcı belirli bir zamanda bir yerden başka bir yere seyahat etmek ya da belirli bir enerji ve momentum ile seyahat için bir parçacığın olasılık genliği verir. Yayıcılar Feynman diyagramları iç hatları üzerinde sanal parçacık'ların katkısını temsil etmek üzere kullanılmaktadır. Ayrıca partikül uygun dalga operatörünün tersi olarak görülebilir ve bu nedenle sıklıkla Green fonksiyonları olarak adlandırılır.

Matematikteki Poincaré yinelenme teoremine göre, dinamikleri hacmini koruyan ve sınırlı mekansal hacimle sınırlanan bir sistem, yeterli süre sonra, baştaki durumuyla aynı olacak veya ona çok yakın bir biçimde yinelenecektir.

Dejenere elektron basıncı, kuantum elektron basıncı olgusundan daha genel olan bir basınçtır. Pauli dışlama ilkesi, bir atomda iki fermiyonun aynı anda tamamen aynı kuantum sayılarına sahip olmasına izin vermemektedir. Sonuçta aniden ortaya çıkan basınç, maddenin daha küçük hacimlerde sıkıştırılmasına karşı koyar. Dejenere elektron basıncı, saf bir maddenin elektron yörünge yapısı olarak tanımlanan, aynı temel mekanizmadan kaynaklanmaktadır. Freeman Dyson, katı maddelerin geçirmezliğinin önceden kabul edilmiş olan elektrostatik iteleme yerine, dejenere kuantum basıncından kaynaklandığını göstermiştir. Ayrıca, dejenere elektron basıncı yıldızların nükleer füzyonu dindiğinde kendi ağırlığı altında çökmesini engellemektedir. Yeterli büyüklükteki yıldızların çöküşünü engellemek için dejenere elektron basıncı yetersiz kalmaktadır ve nötron yıldızı oluşmaktadır. Bu durumda ise, dejenere nötron basıncı yıldızların daha fazla çökmesini engeller.

Compton dalgaboyu bir parçacığın kuantum mekaniği özelliğidir. Compton dalgaboyu Arthur Compton tarafından elektronların foton saçılması olayı izah edilirken gösterilmiştir. Bir parçacığın Compton dalga boyu; enerjisi parçacığın durgun kütle enerjisine eşit olan fotonun dalgaboyuna eşittir. Parçacığın Compton dalgaboyu ( λ) şuna eşittir:

Kuantum harmonik salınıcı, klasik harmonik salınıcın benzeşiğidir. Rastgele seçilmiş potansiyeli denge noktası civarında harmonik potansiyele yakınsanabildiğinden nicem mekanğindeki en önemli model sistemlerden biridir. Dahası, nicem mekaniğinde kesin analitik çözümü olan çok az sistemden biridir.

Dalga işlevinin çöküşü, kuantum dilinde, gözlemcinin de katılımcı olması durumu.

Foton polarizasyonu klasik polarize sinüsoidal düzlem elektromanyetik dalgasının kuantum mekaniksel açıklamasıdır. Bireysel foton özdurumları ya sağ ya da sol dairesel polarizasyona sahiptir. Süperpozisyon özdurumu içinde olan bir foton lineer, dairesel veya eliptik polarizasyona sahip olabilir.

Schrödinger gösterimleri, fizikte, kuantum mekaniğinin bir formülasyonudur. Öyle ki durum vektörleri zaman içinde değişir, ancak operatörler zamana göre sabit kalır. Bu Heisenberg gösteriminden ve etkileşim tasvirden farklıdır çünkü Heisenberg gösteriminde durum vektörleri zaman içinde durumlarını sabit tutarken gözlemlenebilir operatörler değişir ve etkileşim tasvirinde durum vektörleri ve gözlenebilir operatörlerin ikisi de zaman içinde değişir. Schrödinger ve Heisenberg gösterimleri aktif ve pasif dönüşümler gibi birbirleriyle ilişkilidir ve aynı ölçüm istatistiklerine sahiptirler.

<span class="mw-page-title-main">EPR paradoksu</span> kuantum mekaniğinin Kopenhag yorumuna karşı erken ve etkili bir eleştiri

EPR paradoksu, kuantum mekaniğinin Kopenhag yorumuna karşı erken ve etkili bir eleştiridir. Albert Einstein ve arkadaşları Boris Podolsky ve Nathan Rosen kuantum mekaniğinin daha önce fark edilmemiş fakat belli sonuçlara sahip olan kabul edilmiş denklemlendirimini meydana çıkaran bir düşünce deneyi hazırladılar, ancak zamanla bu denklemlendirimler mantıksız göründü. Açıklanan senaryo kuantum dolanıklık olarak bilinen bir olay içeriyordu.

Lamb kayması, adını Willis Lamb'den alan, hidrojen atomunun kuantum elektrodinamiğindeki 2S1/2 ve 2P1/2 enerji düzeyleri arasındaki küçük farklılıktır. Dirac denklemine göre, 2S1/2 ve 2P1/2 orbitalleri (yörüngeleri) aynı enerjiye sahip olmalıdır. Ancak, boşluktaki elektronlar arasındaki etkileşim, 2S1/2 ve 2P1/2 enerji düzeylerinde küçük bir enerji değişimine sebep olur. Lamb ve Robert Retherford bu değişimi 1947'de ölçmüşlerdir ve bu ölçüm, ıraksamayı açıklamak için tekrar normalleştirme teorisine teşvik edici bir unsur olmuştur. Bu, Julian Schwinger, Richard Feynman, Ernst Stueckelberg ve Sin-Itiro Tomonaga tarafından geliştirilmiş modern kuantum elektrodinamiğinin müjdecisiydi. Lamb, 1955 yılında Lamb kayması ile ilgili keşiflerinden ötürü Nobel Fizik Ödülü'nü kazandı.

Fizikte, Kuantum mekaniğinde, eşevreli hal klasik harmonik salıngaca benzeyen kuantum harmonik salıngacının nicel hareketidir. Kuantum dinamiğinin Erwin Schrödinger tarafından Scrödinger denklemlerine çözüm ararken 1926 yılında türetilen ilk örneğidir. Örneğin, eşevre hali parçacığın salınımsal hareketini açıkları. Bu haller, John R. Klauderin ilk makalelerinde alçalma operatörü ve fazla tamamlanmış aile teşkili olarak özvektör adında tanımlanmıştır. Eşevre halleri,[ışığın kuantum kuramında ve diğer bozonik kuantum alanlarında Roy J. Glauber’in 1963 yılındaki çalışmaları tarafından geliştirilmiştir. Salınan alanın eşevre hali, klasik sinüs dalga hareketine benzeyen, devamlı lazer dalgası gibi olan kuantum halidir. Ancak, eşevre hali kavramı kayda değer biçimde genellenmiş ve sinyal sürecini niceleme, görüntü işleme alanlarında matematiksel fizikte ve uygulamalı matematik oldukça geniş ve önemli bir konu olmuştır. Bu hususta, kuantum harmonik salıngacı ile bağlantılı eşevreli haller genel olarak standart eşevreli haller ya da Gauss işlevi halleri olarak anılır.

<span class="mw-page-title-main">Bohr-Einstein tartışmaları</span> Bohr-Einsitein arası diyaloglar

Bohr–Einstein tartışmaları, kuantum mekaniği hakkında Albert Einstein ile Niels Bohr arasında süregelen tartışmadır.

<span class="mw-page-title-main">Fermi'nin etkileşimi</span>

Parçacık fiziğinde, Fermi etkileşimi beta bozunmasının 1933'te Enrico Fermi tarafından önerilmiş bir açıklamasıdır. Teori, dört fermiyonun birbiriyle direkt etkileştiğini varsayar. Bu etkileşim bir nötronun bir elektron, bir nötrino ve bir protonla doğrudan bağlanmasıyla bir nötronun beta bozunmasını açıklar.

<span class="mw-page-title-main">Stokes sayısı</span>

Stokes sayısı (Stk), George Gabriel Stokes'un adını taşıyan ve parçacıkların bir akışkan akışı içerisinde süspansiyonda gösterdiği davranışı karakterize eden bir boyutsuz sayıdır. Stokes sayısı, bir parçacığın karakteristik zamanı ile akışın veya bir engelin karakteristik zamanı arasındaki oran olarak şu şekilde tanımlanır:

Ses şiddeti veya ses yoğunluğu, ses dalgalarının birim alan başına o alana dik yönde taşıdığı gücü ifade eder. SI birimi, metre kare başına watt'tır (W/m2). Ses şiddeti, ses basıncıyla aynı fiziksel nicelik değildir. İnsan kulağı, ses şiddetiyle ilişkili olan ses basıncına karşı duyarlıdır. Ses şiddeti düzeyi, bir referans şiddet değerine göre ses şiddetinin logaritmik ifadesidir.