İçeriğe atla

Beklenen değer

Olasılık kuramı bilim dalında matematiksel beklenti veya beklenen değer veya ortalama birçok defa tekrarlanan ve her tekrarda mümkün tüm olasılıklarını değiştirmeyen rastgele deneyler sonuçlarından beklenen ortalama değeri temsil eder. Bir ayrık rassal değişkennin alabileceği bütün sonuç değerlerin (bazen ödemelerin) olasılıklarıyla çarpılması ve bu işlemin bütün değerler üzerinden toplanmasıyla elde edilen değerdir. Bir sürekli rassal değişken için rassal değişken ile olasılık yoğunluk fonksiyonunun çarpımının aralığı belirsiz integralidir. Fakat dikkat edilmelidir ki bu değerin genel pratik anlamla rasyonel olarak beklenmesi pek uygun olmayabilir, çünkü matematiksel beklentiin olasılığı çok düşük belki sıfıra çok yakın olabilir ve hatta pratikte matematiksel beklenti bulunmaz. Ağırlıklı ortalama olarak da düşünülebilir ki değerler ağırlık katsayıları verilen olasılık kütle fonksiyonu veya olasılık yoğunluk fonksiyonudur.

Tanım

Pratik örneklerle belirleme

Matematiksel beklenti, beklenen değer işlemcisi E ile gösterilir. Hileli/ yanlı olmayan bir altı-yüzlü zar atılırsa mümkün değerler (1 2 3 ...6) olup her bir değerin olasılığı (1/6) olur. Böylece tek bir zar atımı için matematiksel beklenti

olur. Dikkat edilirse bu beklenen değer kesirsel olup gerçekte mümkün olan bir sonuç değildir.

Matematiksel beklenti kavramının pratikte çok kullanıldığı bir alan kumar oyunlarıdır. Bir Amerikan tipi rulet oyunu tekerleğinde dönen ufak topun her birine aynı olasılıkla girip kalabileceği numara verilmiş 38 küçük delik vardır. Eğer topun gireceği deliğin numarası için bahse girilirse ve bu bahiste doğru bilişte kazanç bahis-olasılığı ile 35-te-1 olur; yani sonuç bahisin 36 misli olup koyulan para kaybedilmeyip 35 misli daha kazanç sağlanır. Her bir sonuça bahis için iki mümkün olay kaybetme veya kazanma ve bu iki mümkün olay için (kumar için çok kere bahis-olasılığı ile ifade edilen) olasılık vardır. Toplam mümkün 38 tane sonuç olabileceğine göre, tek bir numaraya 1TL konulursa kazancın beklenen değerini bulmak için önce kaybetme para değeri ile kaybetme bahis-olasılığı çarpımı; sonra kazanma para değeri ile kazanma bahis-olasılığı çarpımı bulunup bu ikisinin toplamı alınır; yani

1TL bahis için mali durumdaki değişme, kaybedince -1TL ve kazanınca 35TL olur. Böylece, ortalama olarak, her yapılan 1TL değerde bahis için zarar 5 kuruşu biraz geçecektir ve 1TLlik bahsin matematiksel beklentisi 0,9474TL olacaktır. Kumar oyunlarında, bir oyun için beklenen değer bahse koyulan değere eşitse (yani kumar oynayanın beklenen değeri 0 ise) o kumar oyunu "adil oyun" diye isimlendirilir.

Matematiksel tanım

Genel olarak, eğer olan bir olasılık uzayı içinde bir rassal değişken ise, o halde in matematiksel beklentisi, notasyon olarak değer işlemcisi E kullanarak, veya bazen veya olarak yazılır ve şöyle tanımlanır:

Burada Lebesgue entegrasyonu uygulanmıştır. Dikkat edilmelidir ki bütün rassal değişkenler için matematiksel beklenti değeri bulunmaz; bu entegral bulunmayıp anlamsız ise (örneğin Cauchy dağılımı için) o halde beklenen değer de tanımlanamaz ve anlamsızdır. Ayni olasılık dağılımı gösteren iki rassal değişken için matematiksel beklenti aynıdır.

Eğer bir olasılık kütle fonksiyonu olan bir ayrık rassal değişken ise, o halde beklenen değer şu olur:

Eğer bir sürekli rassal değişken olup olasılık yoğunluk fonksiyonu ise, o halde matematiksel beklenti veya beklenen değer şöyle bulunur:

Olasılık yoğunluk fonksiyonu f(x) olan rassal değişken X için herhangi bir rastgele seçilmiş fonksiyon g(X) için matematiksel beklenti veya beklenen değer şöyle verilir:

Özellikler

Sabitler

Bir sabit k için matematiksel beklenti veya beklenen değer sabitin kendi değerine eşittir:

Monotonluk

Eğer X ve Y iki rassal değişken ve geçerli ise, o halde

.

olur.

Doğrusallık

Beklenen değer işlemcisi şu anlamlarda doğrusal olur:

;
;

Bu üç denklem sonuçları birleştirilirse şu ifadeler bulunur:

Burada ile aynı olasılık uzayında bulunan rassal değişkenler ve ile reel sayılardır.

Yinelenmiş beklenti

Ayrık rassal değişken için yinelenmiş beklenti

Herhangi iki ayrık rassal değişken için koşullu beklenti şöyle tanımlanabilir:

Bundan ifadesinin üzerinde bir fonksiyon olduğu anlaşılır.

O zaman için beklenti şu ifadeyi tatmin eder:

Böylece şu denklem ortaya çıkartılır:

Bu denklemin sağ tarafı yinelenmiş beklenti adı ile anılır ve bazen kule kuralı adı da verilir. Bu toplam beklenti yasası maddesinde de incelenmiştir.

Sürekli rassal değişken için yinelenmiş beklenti

Herhangi iki sürekli rassal değişken için de sonuçlar ayrık rassal değişkenler halinin tamamıyla benzeridir. Koşullu beklenti tanımı eşitsizlikleri kullanır; olasılık yoğunluk fonksiyonları ile entegralleri olasılık kütle fonksiyonları ile toplamalar yerlerini alırlar. Sonunda aynı sonuç ortaya çıkar:

Eşitsizlik

Eğer bir rassal değişken X diğer bir rassal değişken olan Yden daha az veya ona eşitse ise,

Eğer , o halde olur.

Özellikle ve oldukları için, bir rassal değişkenin matematiksel beklentisinin (veya beklenen değerinin) mutlak değeri, mutlak değerinin matematiksel beklentisinden daha küçük olur veya ona eşittir:

Simgelenme

() koşuluna uyan her bir negatif olmayan reel değerli rassal değişken X ve pozitif reel sayı için şu formül her zaman geçerlidir:

Özellikle bu daha da kısa olarak şöyle ifade edilebilir:

Çarpımsallık özelliği olmama

Genel olarak E beklenen değer işlemcisinin çarpımsallık özelliği bulunmaz, yani ile birbirine mutlaka eşit olmaz. Eğer çarpımsallık özelliği bulunursa, bu halde ve rassal değişkenleri birbiri arasında korelasyon bulunmayan değişkenler olarak tanımlanırlar. Aralarında bağımsızlık bulunan değişkenlerin birbirleri arasında korelasyon bulunmayan değişkenlere en önemli örneğin sağlarlar. Genellikle çarpımsal olmama özelliği kovaryasyon ve korelasyon analizlerine önemli bir neden sağlar.

Fonksiyonel daimilik olmaması

Genel olarak beklenen değer işlemcisi E'ye ve rassal değişkenler için fonksiyonlara değişmeli işlem uygulanamaz; yani

Bu konuyla ilişkili en önemli konu konveks (veya konkav) fonksiyonlarla ilişkili olarak Jensen'in eşitsizliğidir.

Matrisler için beklenti

Matris matematiğine göre, dereceli bir matris ise o halde bu matrisin matematiksel beklentisi (veya beklenen değeri) matris elamanlarının ayrı ayrı matematiksel beklentilerinin (veya beklenen değerlerinin) matrisi olur:

Bu sonuç kovaryans matrisleri için kullanılır.

Ayrıca bakınız

  • Koşullu beklenti
  • Konum ve ölçek parametreleri için bir eşitsizlik
  • Pascal'ın Bahsi
  • Momentler
  • Beklenti değeri (kuantum mekanik)
  • St.Petersburg paradoksu

Dış bağlantılar

İlgili Araştırma Makaleleri

Olasılık kuramı ve istatistik bilim dallarında varyans bir rassal değişken, bir olasılık dağılımı veya örneklem için istatistiksel yayılımın, mümkün bütün değerlerin beklenen değer veya ortalamadan uzaklıklarının karelerinin ortalaması şeklinde bulunan bir ölçüdür. Ortalama bir dağılımın merkezsel konum noktasını bulmaya çalışırken, varyans değerlerin ne ölçekte veya ne derecede yaygın olduklarını tanımlamayı hedef alır. Varyans için ölçülme birimi orijinal değişkenin biriminin karesidir. Varyansın karekökü standart sapma olarak adlandırılır; bunun ölçme birimi orijinal değişkenle aynı birimde olur ve bu nedenle daha kolayca yorumlanabilir.

<span class="mw-page-title-main">Kovaryans</span>

Olasılık teorisi ve istatistikte, kovaryans iki değişkenin birlikte ne kadar değiştiklerinin ölçüsüdür. Kovaryans, iki rastgele değişkenin beraber değişimlerini inceleyen bir istatistiktir. İki değişkenin birbirine benzer (eş) işlevli olması kovaryant; iki değişkenin birbirine zıt işlevli olması kontravaryant olarak ifade edilir.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

Rassal değişken kavramının geliştirilmesi ile, sezgi yoluyla anlaşılan şans kavramı, soyutlaştırarak teorik matematik analiz alanına sokulmuş ve bu geliştirilen matematik kavram ile olasılık kuramı ve matematiksel istatistiğin temeli kurulmuştur.

<span class="mw-page-title-main">Binom dağılımı</span>

Olasılık kuramı ve istatistik bilim kollarında, binom dağılımı n sayıda iki kategori (yani başarı/başarısızlık, evet / hayır, 1/0 vb) sonucu veren denemelere uygulanır. Araştırıcının ilgi gösterdiği kategori başarı olarak adlandırılır. Bu türlü her bir deneyde, bağımsız olarak, başarı (=evet=1) olasılığının p olduğu (ve yalnızca iki kategori sonuç mümkün olduğu için başarısızlık olasılığının 1 - p olduğu) bilinir. Bu türlü bağımsız n sayıda denemeler serisi içinde elde edilen başarı sayısının ayrık olasılık dağılımı binom dağılım olarak tanımlanır. Bir binom dağılım sadece iki parametre ile, yani n ve p ile tam olarak tanımlanır. Matematik notasyon olarak bir rassal değişken X binom dağılım gösterirse şöyle ifade edilir:

X ~ B(n,p)
<span class="mw-page-title-main">Geometrik dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında geometrik dağılım şu iki şekilde ifade edilebilen ayrık olasılık dağılımıdır:

<span class="mw-page-title-main">Üstel dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında üstel dağılımı bir sürekli olasılık dağılımları grubudur. Sabit ortalama değişme haddinde ortaya çıkan bağımsız olaylar arasındaki zaman aralığını modelleştirirken bir üstel dağılım doğal olarak ortaya çıkar.

Olasılık teorisi ya da ihtimaliyet teorisi rastgele olayların analizi ile ilgilenen bir matematik bilim dalıdır. Olasılık teorisinin ana ögeleri rassal değişkenler, saf rassal süreçler, olaylar olarak sayılabilir. Bunlar ya tek olarak ortaya çıkan veya bir zaman dönemi içinde gelişerek meydana gelen, ilk görünüşü rastgele bir şekilde olan deterministik olmayan olayların veya ölçülebilir miktarların matematiksel soyutlamalarıdır. Bir madeni parayı yazı-tura denemesi için havaya atmak veya bir zarı atmak ile ortaya çıkan sonuç ilk bakışta rastgele bir olay olarak görülebilirse bile eğer birbirini takip eden rastgele olaylar tekrar tekrar ortaya çıkartılırsa incelenebilecek ve tahmin edilebilecek belirli bir istatistiksel seyir takip ettikleri görülecektir. Bu türlü olaylar ve sonuçların seyirlerini betimleyen iki temsilci matematiksel sonuç büyük sayılar yasası ve merkezsel limit teoremidir.

Olasılık kuramı ve istatistik bilim dallarında birikimli dağılım fonksiyonu bir reel değerli rassal değişken olan Xin olasılık dağılımını tümüyle tanımlayan bir fonksiyondur. Olasılık dağılım fonksiyonu veya sadece dağılım fonksiyonu olarak da anılmaktadır. Her bir reel sayı olan x için X'in birikimli dağılım fonksiyonu şöyle ifade edilir:

Olasılık kuramı ve istatistik bilim dallarında bir rassal değişken X için olasılık yoğunluk fonksiyonu bir reel sayılı sürekli fonksiyonu olup f ile ifade edilir ve şu özellikleri olması gereklidir:

Olasılık kuramı ve istatistik bilim dallarında, bir rassal değişken X için, eğer beklenen değer var ise, moment üreten fonksiyon şöyle tanımlanır:

Olasılık kuramı içinde herhangi bir rassal değişken için karakteristik fonksiyon, bu değişkenin olasılık dağılımını tüm olarak tanımlar. Herhangi bir rassal değişken X için, gerçel doğru üzerinde, bu fonksiyonu tanımlayan formül şöyle yazılır:

<span class="mw-page-title-main">Büyük sayılar yasası</span>

Büyük Sayılar Kanunu ya da Büyük Sayılar Yasası, bir rassal değişkenin uzun vadeli kararlılığını tanımlayan bir olasılık teoremidir. Sonlu bir beklenen değere sahip birbirinden bağımsız ve eşit dağılıma sahip bir rassal değişkenler örneklemi verildiğinde, bu gözlemlerin ortalaması sonuçta bu beklenen değere yakınsayacak ve bu değere yakın bir seyir izleyecektir.

Olasılık kuramı ve istatistik bilimsel dallarında bir reel-değerli rassal değişken için k-ıncı ortalama etrafındaki moment, E beklenen değer operatörü olursa

μk := E[(X - E[X])k]

Olasılık kuramı ve istatistik bilim dallarında bir rassal değişken Xin μ = E(X) olarak ifade edilen beklenen değeri ve σ² = E((X - μ)²) olarak ifade edilen varyansı bulunur. Bunlar ilk iki kümülant olarak belirlenirler; yani

κ1 = μ ve κ² = σ².

Matematik bilimi içinde moment kavramı fizik bilimi için ortaya çıkartılmış olan moment kavramından geliştirilmiştir. Bir bir reel değişkenin reel-değerli fonksiyon olan f(x)in c değeri etrafında ninci momenti şöyle ifade edilir:

Koşullu beklenti, koşullu beklenen değer veya koşullu ortalama, olasılık kuramı bilim dalında bir reel değerli rassal değişken için bir koşullu olasılık dağılımı na göre matematiksel beklentidir.

Kupon toplayıcısının problemi bir olasılık kuramı pratik problemi olarak "bütün kuponları topla ve ödün kazan" tipli yarışmalar için olasılık modeli içerir. Sorulan soru şöyle ifade edilebilir:

Yarışma için n sayıda kupon olduğu kabul edilsin ve kuponların geri koyup tekrar seçme ile toplandığı varsayılsın. Bütün n kuponları toplamak icin t sayıda örneklem deneysel seçiminden daha fazla sayıda seçim yapılması gerekliliğinin olasılığı nedir?"

Olasılık kuramında iki olayın bağımsız olması bu olaylardan birinin gerçekleşme olasılığının diğer olayın gerçekleşip gerçekleşmediğine bağlı olmaması anlamına gelmektedir. Örneğin;

<span class="mw-page-title-main">Bir olayın olma olasılığı</span>

Olasılık yoğunluk fonksiyonu, olasılık kuramı ve bir olayın olma olasılığı dallarında bir rassal değişken olan X için reel sayılı sürekli fonksiyondur.