Matematik ; sayılar, felsefe, uzay ve fizik gibi konularla ilgilenir. Matematikçiler ve filozoflar arasında matematiğin kesin kapsamı ve tanımı konusunda görüş ayrılığı vardır.
Bir üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimidir. Üçgene müselles ve üçbucak da denir.
Geometri, matematiğin uzamsal ilişkiler ile ilgilenen alt dalıdır. Yunanca Γεωμετρία "Geo" (yer) ve "metro" (ölçüm) birleşiminden türetilmiş bir isimdir.
Matematikte cebirin temel teoremi karmaşık değişkenli polinomların köklerinin varlığıyla ilgili temel bir sonuçtur. D'Alembert-Gauss teoremi olarak da anılmaktadır.
Türbülans veya Çalkantı bir akışkanın hareket hâlindeki düzensizliğidir. Akışkanlar dinamiğinde, türbülans veya türbülanslı akış, basınç ve akış hızında meydana gelen kaotik, stokastik değişimlerle tanımlanan bir akış rejimidir. Akışkanın düzenli katmanlar hâlinde aktığı laminer akışın aksine türbülanslı akışlar düzensiz biçimde karışarak hareket eder. Akışın hangi rejimde olduğu atalet kuvvetlerinin viskozite kuvvetlerine oranını belirten boyutsuz Reynolds sayısı ile tahmin edilebilir. Örneğin, tipik bir boru akışı için Reynolds sayısı yaklaşık 2300'ü aştıktan sonra genellikle akış, türbülanslı rejime geçer. Yüksek Reynolds sayıları türbülanslı rejimin habercisi olarak sayılabilirse de bu geçişin gerçekleştiği Reynolds sayısı birçok faktöre bağlıdır ve farklı problemlerde çok daha yüksek veya düşük bir Reynolds sayısında türbülanslı rejime geçiş olabilir.
Genetik algoritmalar, doğada gözlemlenen evrimsel mekanizmalara benzer mekanizmalar kullanarak çalışan eniyileştirme yöntemidir. Çok boyutlu uzayda belirli bir maliyet fonksiyonuna göre en iyileştirme amacıyla iterasyonlar yapan ve her iterasyonda en iyi sonucu üreten kromozomun hayatta kalması prensibine dayanan en iyi çözümü arama yöntemidir.
Karmaşık analiz ya da başka bir deyişle kompleks analiz, bir karmaşık değişkenli fonksiyonları araştıran bir matematik dalıdır. Bir değişkenli karmaşık analize ya da çok değişkenli karmaşık analizle beraber tümüne karmaşık değişkenli fonksiyonlar teorisi de denilir.
Ana başlıklarına göre karmaşık analiz konuları:
Matematiğin bir dalı olan karmaşık analizde Mergelyan teoremi, Ermeni matematikçi Sergey Nikitoviç Mergelyan tarafından 1951'de kanıtlanmış ve Mergelyan'a ithafen isimlendirilmiş bir matematiksel sonuçtur.
Matematiğin bir alt dalı olan karmaşık analizde, Liouville teoremi tam fonksiyonların sınırlılığıyla ilgili temel bir teoremdir.
Matematikte, Hartogs teoremi, çok değişkenli karmaşık analizde birden fazla karmaşık değişkene sahip holomorf fonksiyonların analitik devamlarıyla ilgili olan ve karmaşık analizin bir değişkenli fonksiyonlar teorisinde varolmayan bir sonuçtur.
SAT problemi bir NP-tam sınıfı problemidir.
Sözde dışbükey bölgeler, matematikte karmaşık analizin ve çok değişkenli karmaşık analizin merkezinde yer alan holomorf fonksiyonların doğal tanım kümeleridir.
Çemberlerde Thales teoremi, alınan A, B ve C noktalarının bir çember üzerinde ve AC doğrusunun bu çemberin çapı olması durumunda, ABC açısının dik açı olacağını belirten geometri teoremi. Thales teoremi çevre açı kurallarının özel bir hâlidir. Adını Thales'ten alan teorem, genellikle ona atfedilir ancak bazı yerlerde Pisagor'la da ilişkilendirilir.
Diofantos cebirin babası olarak tanımlanan, cebir denklemleri ve sayılar teorisi üzerine Arithmetika adlı eserin yazarı olan Yunan matematikçi. Değişkenleri sadece tam sayılar olan ve kendi adını taşıyan Diofantos denklemiyle de bilinir.
Bilgisayar bilimi, matematik, ekonomi ve biyoinformatikte dinamik programlama karmaşık bir problemi tekrarlanan alt problemlere bölerek, her bir alt problemi yalnız bir kere çözüp daha sonra bu çözümü kaydederek karmaşık problemin çözümünde kullanma yöntemidir. Bir alt problem çözüldükten sonra tekrar çözülmesi gerektiğinde daha önce kaydedilen çözüm kullanılarak zaman kazanılır, ancak alt problemlerin kaydedileceği daha fazla alana gereksinim duyulur. Yani dinamik programlama algoritmaları alandan ödün verilerek zamandan kazanılmasını sağlar. Dinamik programlama algoritmaları optimizasyon problemlerinin çözümünde yaygın olarak kullanılır.
Matematiğin bir alt dalı olan karmaşık analizde, holomorfluk bölgesi, üzerinde tanımlı olan holomorf fonksiyolardan en az bir tanesinin daha büyük bir bölgeye holomorf özelliğini koruyarak devam ettirelemediği bölgelere verilen addır. Karmaşık düzlemdeki açık kümelerin hepsi holomorfluk bölgesidir. Ancak, karmaşık düzlemde geçerli olan bu sonucun dengi bir sonuç yüksek boyutlu uzayda herhangi bir bölge için geçerli değildir. Bu yüzden, holomorfluk bölgelerin belirleyici özelliklerini bulmak yirminci yüzyılın ilk yarısında çok değişkenli karmaşık analizde en yoğun çalışılmış konulardan birisi olmuştur. Bu farklılığı ilk defa Fritz Hartogs göz önüne sermiştir ve sonuç en genel haliyle Hartogs devam (genişleme) teoremi olarak bilinmektedir.
Matematikte, karmaşık koordinat uzayı de ya da bu uzayın altkümeleri üzerinde tanımlı ve karmaşık değer alan fonksiyonların teorisine; yani, birden fazla karmaşık değişkenli fonksiyonların teorisine çok değişkenli karmaşık analiz denir.
Matematiğin bir alt dalı olan çok değişkenli karmaşık analizde, Hefer teoremi, bir holomorfluk bölgesinde tanımlı holomorf fonksiyonların iki noktadaki değer farkının bu holomorfluk bölgesinin kartezyen çarpımında tanımlı olan başka holomorf fonksiyonlar ile bu iki noktanın koordinatları çarpımlarının toplamı olarak yazılabileceğini ifade eden bir sonuçtur.