İçeriğe atla

Barrow eşitsizliği

Barrow eşitsizliği

Geometride Barrow eşitsizliği, bir üçgen içindeki rastgele bir nokta alındığında, bu nokta ile üçgenin köşeleri ve üçgenin kenarlarındaki belirli noktalar arasındaki mesafeleri ilişkilendiren bir eşitsizliktir. Adını Amerikalı bir matematikçi olan David Francis Barrow'dan almıştır.

Açıklama

, üçgeninin içinde rastgele bir nokta olsun. ve 'den, , ve 'yi, , ve 'nin açıortaylarının sırasıyla , , kenarlarıyla kesiştiği noktalar olarak tanımlayın. Ardından Barrow eşitsizliği şunu belirtir:[1]

Eşitlik sadece eşkenar üçgen durumunda sağlanır ve bu durumda üçgenin merkezidir.[1]

İspat

, , , , , , , ve olsun. İspat edilmesi gereken ifade olur. Aşağıdaki özdeşlikleri çıkarmak kolaydır;

,
,
.

Aritmetik Ortalama-Geometrik Ortalama eşitsizliği ve yukarıdaki sonuçla, bu şu anlama gelir:

İstenen ifade ispatlanmış olur.

Genelleştirme

Barrow eşitsizliği dışbükey çokgenlere kadar genişletilebilir. Köşeleri olan dışbükey bir çokgen için çokgenin içindeki rastgele bir nokta ve , açıortayları ile ilişkili çokgen kenarlarının kesişimleri olsun, ardından aşağıdaki eşitsizlik geçerlidir:[2][3]

Burada sekant fonksiyonunu belirtir. Üçgen durumu, yani için olduğundan eşitsizlik, Barrow eşitsizliğine dönüşür.

Tarihçe

Barrow, Erdös-Mordell eşitsizliğini güçlendirir

Barrow eşitsizliği, , ve 'nin noktasından üçgenin kenarlarına olan üç uzaklık ile değiştirilmesi haricinde aynı biçime sahip olan Erdős-Mordell eşitsizliğini güçlendirir. Adını David Francis Barrow'dan almıştır. Barrow'un bu eşitsizliğin kanıtı, 1937'de, Erdős-Mordell eşitsizliğini kanıtlayan American Mathematical Monthly dergisinde ortaya atılan bir probleme çözüm olarak yayınlandı.[1] 1961 gibi erken bir tarihte "Barrow eşitsizliği" olarak adlandırıldı.[4]

Daha basit bir kanıt daha sonra Louis J. Mordell tarafından verildi.[5]

Ayrıca bakınız

Kaynakça

  1. ^ a b c Erdős, Paul; Mordell, L. J.; Barrow, David F. (1937), "Solution to problem 3740", American Mathematical Monthly, 44 (4), ss. 252-254, doi:10.2307/2300713, JSTOR 2300713 .
  2. ^ M. Dinca: "A Simple Proof of the Erdös-Mordell Inequality" 13 Kasım 2020 tarihinde Wayback Machine sitesinde arşivlendi.. In: Articole si Note Matematice, 2009
  3. ^ Hans-Christof Lenhard: "Verallgemeinerung und Verschärfung der Erdös-Mordellschen Ungleichung für Polygone". In: Archiv für Mathematische Logik und Grundlagenforschung, Band 12, S. 311–314, doi:10.1007/BF01650566 (Almanca).
  4. ^ Oppenheim, A. (1961), "New inequalities for a triangle and an internal point", Annali di Matematica Pura ed Applicata, cilt 53, ss. 157-163, doi:10.1007/BF02417793, MR 0124774 
  5. ^ Mordell, L. J. (1962), "On geometric problems of Erdös and Oppenheim", The Mathematical Gazette, 46 (357), ss. 213-215, JSTOR 3614019 .

Dış bağlantılar

Konuyla ilgili yayınlar

  • Malesevic, Branko & Petrovic, Maja. (2014). Barrow's Inequality and Signed Angle Bisectors. Journal of Mathematical Inequalities. 10.7153/jmi-08-40., Makale 10 Kasım 2020 tarihinde Wayback Machine sitesinde arşivlendi. veya Makale 10 Ağustos 2017 tarihinde Wayback Machine sitesinde arşivlendi.
  • Liu, Jian. (2016). Refinements of the Erdös-Mordell inequality, Barrow’s inequality, and Oppenheim’s inequality. Journal of Inequalities and Applications. 2016. 10.1186/s13660-015-0947-2., Makale
  • Liu, Jian. (2019). New Refinements of the Erdös–Mordell Inequality and Barrow’s Inequality, https://doi.org/10.3390/math7080726, Makale

İlgili Araştırma Makaleleri

Laplasyen , skaler bir alanının gradyanı alınarak elde edilen vektörün diverjansıdır. Fizikteki birçok diferansiyel denklem laplasyen içerir.

<span class="mw-page-title-main">Trigonometri</span> üçgenlerin açı ve kenar bağıntılarını konu alan geometri dalı

Trigonometri, üçgenlerin açıları ile kenarları arasındaki bağıntıları konu edinen matematik dalı. Trigonometri, sinüs ve kosinüs gibi trigonometrik işlevlerin (fonksiyon) üzerine kurulmuştur ve günümüzde fizik ve mühendislik alanlarında sıkça kullanılmaktadır.

<span class="mw-page-title-main">Küresel koordinat sistemi</span>

Küresel koordinat sistemi, üç boyutlu uzayda nokta belirtmenin bir yoludur.

<span class="mw-page-title-main">Öz empedans</span>

Öz direnç (Empedans), maddenin kimyasal özelliğinden dolayı direncinin artması ya da azalmasına neden olan her maddeye özgü ayırt edici bir özelliktir. Farklı maddelerin empedansları aynı olabilir ama öz dirençleri aynı olamaz. R= Lq/Q dur. (Rezistif Direnç= Uzunluk*öz direnç/kesit, Alternatif akım'a karşı koyan zorluk olarak adlandırılır. İçinde kondansatör ve endüktans gibi zamanla değişen değerlere sahip olan elemanlar olan devrelerde direnç yerine öz direnç kullanılmaktadır. Öz direnç gerilim ve akımın sadece görünür genliğini açıklamakla kalmaz, ayrıca görünür fazını da açıklar. DA devrelerinde öz direnç ile direnç arasında hiçbir fark yoktur. Direnç sıfır faz açısına sahip öz direnç olarak adlandırılabilir.

<span class="mw-page-title-main">Euler spirali</span> düzlemsel eğri

Euler spirali, eğimi eğrinin uzunluğuyla doğrusal olarak degişen bir eğridir. Euler spiralleri yaygın olarak spiros, clothoids veya Cornu spiralleri olarak da adlandırılır. Euler spirallerinin kırınım hesaplamalarında uygulamaları vardır. Genellikle demiryolu ve karayolu mühendisliklerinde teğet eğrisi ve dairesel eğri arasındaki geometriyi bağdaştırmaya ve aktarmaya yarayan geçiş eğrisi olarak kullanılır. Teğet eğrisi ve dairesel eğri arasındaki geçiş eğrisinin eğimindeki lineer değişim prensibi Euler spiralinin geometrisini belirler:

Matematiksel analizde Legendre fonksiyonları, aşağıdaki Legendre diferansiyel denkleminin çözümleridir.

 ;
<span class="mw-page-title-main">Işıktan hızlı hareket</span>

Astronomide, ışıktan hızlı hareket bazı radyo galaksilerin, kuasarların ve yakın zamanda bazı galaktik kaynaklarda denilen mikrokuasarlarda görülen görünüşte ışıktan daha hızlı hareket olduğudur Bu kaynakların hepsi yüksek hızlarda kütlesinin fırlamasından sorumlu bir kara delik içerdiği düşünülmektedir.

<span class="mw-page-title-main">Küresel harmonikler</span>

Matematikte, küresel harmonikler Laplace denkleminin çözüm kümesinin açısal kısmıdır. Küresel koordinatların bir sistemi içinde küre yüzeyinde tanımlanır, Fourier serisi ise çember üzerinde tanımlanır. Laplace'ın küresel harmonikleri Pierre Simon de Laplace tarafından ilk 1782 yılında tanıtılan bir ortogonal sistemin küresel harmonik formlarının özel bir kümesidir. Küresel harmoniklerden birkaçının kökleri sağda gösterimlenmiştir. Küresel harmonikler pek çok yerde teorik önem taşımaktadır ve özellikle atomik yörünge elektron konfigürasyonları, yerçekimi alanları, geoitleri ve gezegen ve yıldızların manyetik alanlarının temsili ve kozmik mikrodalga arka plan radyasyonu karakterizasyonu hesaplanmasında kullanılan pratik uygulamaları vardır. Küresel harmonikler 3D Bilgisayar grafiklerinde, dolaylı aydınlatma ve 3D şekillerin tanınması gibi konularda geniş bir yelpazede özel bir rol oynamaktadır.

<span class="mw-page-title-main">Thales teoremi</span>

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

<i>Büyüklükler ve Uzaklıklar Üzerine</i>

(Güneş ve Ay'ın) Büyüklükleri ve Uzaklıkları Üzerine, MÖ. 280-240 yaşamış Sisamlı Aristarkus'ın günümüze kadar ulaşmış kitabıdır. Kitapta Güneş ve Ay'ın büyüklüklerini gösterir çizimler ve hesaplamalar yer alırken, Dünya'nın yarıçapı biriminde uzaklıkları da verilmiştir.

<span class="mw-page-title-main">Elektrozayıf etkileşim</span>

Parçacık fiziğinde elektrozayıf etkileşim, doğanın bilinen iki veya dört temel etkileşiminin birleşimin bir tanımıdır: elektromanyetizm ve zayıf etkileşim. Her gün düşük enerjilerde, bu iki kuvvet çok farklı oluşsa da, teori modelleri aynı kuvvetin iki farklı etkisi gibidir. Yukarıdaki birleştirme enerjisi, yaklaşık 100 GeV, tek bir elektrozayıf kuvvet oluşturabilir. Bu yüzden, eğer evren yeterince sıcaksa (Big Bang'den kısa bir sonra olan bir sıcaklık ortalama 1015 K), elektromanyetik kuvvet ve zayıf kuvvet birleşmiş bir elektrozayıf kuvvete dönüşür. Elektrozayıf dönem boyunca, zayıf kuvvet güçlü kuvvetten ayrılır. Kuark dönem boyunca, elektrozayıf kuvvet elektromanyetik ve zayıf kuvvetten ayrılır.

<span class="mw-page-title-main">Trifaze elektrik</span>

Üç Fazlı Elektirik, yüksek güçlerde kullanılan bir elektrik besleme sistemidir.

<span class="mw-page-title-main">Batlamyus teoremi</span> Öklid geometrisinde bir teorem

Öklid geometrisinde, Batlamyus teoremi, bir kirişler dörtgeninin dört kenarı ile iki köşegeni arasındaki bir ilişkiyi gösteridir. Teorem, Yunan astronom ve matematikçi Batlamyus'un adını almıştır. Batlamyus, teoremi astronomiye uyguladığı trigonometrik bir tablo olan kirişler tablosunu oluşturmaya yardımcı olarak kullandı.

Öklid geometrisinde, Erdős–Mordell eşitsizliği herhangi bir üçgeni ve içindeki noktası için, 'den kenarlara olan uzunlukların toplamının, 'den köşelere olan uzunlukların toplamının yarısına eşit veya daha az olduğunu belirten teoremdir. Teorem, adını Macar matematikçi Paul Erdős ve Amerika doğumlu İngiliz matematikçi Louis Mordell'den almıştır. Erdős (1935) eşitsizliği kanıtlama problemini ortaya attı; iki yıl sonra tarafından bir kanıt sağlandı. Ancak bu çözüm çok basit değildi. Sonraki basit ispatlar daha sonra Kazarinoff (1957), Bankoff (1958) ve Alsina & Nelsen (2007) tarafından verilmiştir.

<span class="mw-page-title-main">Euler teoremi (geometri)</span>

Geometride, Euler teoremi, üçgenin çevrel çemberinin merkezi ve iç teğet çemberinin merkezi arasındaki uzunluğunun aşağıdaki şekilde ifade edildiğini belirtir:

Trigonometride, trigonometrik özdeşlikler trigonometrik fonksiyonları içeren ve eşitliğin her iki tarafının da tanımlandığı değişkenlerin her değeri için doğru olan eşitliklerdir. Geometrik olarak, bunlar bir veya daha fazla açının belirli fonksiyonlarını içeren özdeşliklerdir. Bunlar üçgen özdeşliklerinden farklıdır, bunlar potansiyel olarak açıları içeren ama aynı zamanda kenar uzunluklarını veya bir üçgenin diğer uzunluklarını da içeren özdeşliklerdir.

Trigonometrik fonksiyonları tanımlamanın birkaç eşdeğer yolu vardır ve bunlar arasındaki trigonometrik özdeşliklerin kanıtları seçilen tanıma bağlıdır. En eski ve en temel tanımlar dik üçgenlerin geometrisine ve kenarları arasındaki orana dayanır. Bu makalede verilen kanıtlar bu tanımları kullanır ve dolayısıyla bir dik açıdan büyük olmayan negatif olmayan açılar için geçerlidir. Daha büyük ve negatif açılar için Trigonometrik fonksiyonlar bölümüne bakınız.

<span class="mw-page-title-main">Trigonometrik yerine koyma</span> trigonometrik fonksiyonları içeren integrallerin hesaplanması için yöntem

Matematikte, bir trigonometrik yerine koyma veya trigonometrik ikame, trigonometrik fonksiyon yerine başka bir ifadeyi koyar. Kalkülüste trigonometrik ikameler integralleri hesaplamak için kullanılan bir tekniktir. Bu durumda, radikal fonksiyon içeren bir ifade trigonometrik bir ifade ile değiştirilir. Trigonometrik özdeşlikler cevabı basitleştirmeye yardımcı olabilir. Diğer yerine koyma yoluyla integrasyon yöntemlerinde olduğu gibi, belirli bir integrali değerlendirirken, integrasyon sınırlarını uygulamadan önce, ters türevin sonucunu tam olarak çıkarmak daha basit olabilir.

Trigonometrik fonksiyonların türevleri, trigonometrik bir fonksiyonun türevini yani bir değişkene göre değişim oranını bulmanın matematiksel sürecidir. Örneğin, sinüs fonksiyonunun türevi şeklinde yazılır, bu da sin(x) fonksiyonunun belirli bir açı x = a için değişim oranının o açının kosinüsü ile verildiği anlamına gelir.

<span class="mw-page-title-main">Pisagor trigonometrik özdeşliği</span> sin² θ + cos² θ = 1

Pisagor trigonometrik özdeşliği, daha basit ifadeyle Pisagor özdeşliği olarak da adlandırılır, Pisagor teoremini trigonometrik fonksiyonlar cinsinden ifade eden bir özdeşliktir. Açıların toplam formülleri ile birlikte, sinüs ve kosinüs fonksiyonları arasındaki temel bağıntılardan biridir. Özdeşlik şu şekildedir: