
Doğru, matematikte mantıksal bir değerdir. Matematik'te ne olduğu belli olmayan (tanımsız) değerlerden biridir. Ayrıca geometride doğru ifadesi aynı doğrultuda olan ve her iki yönden de sonsuza kadar giden noktalar kümesi diye de tanımlanır. Bir doğru üzerinde en az 2 nokta, dışında da en az 1 nokta mevcuttur.

Parabol, bir düzlemde alınan sabit bir "d" doğrusu ile sabit bir "F" noktasından eşit uzaklıktaki noktaların geometrik yerleştirilmesidir. Cebirde ise y=ax2+bx+c şeklindeki ikinci derece fonksiyonları grafiği olarak bilinir.

Mesafe (uzaklık), iki noktanın birbirlerinden ne kadar ayrı olduklarının sayısal ifadesidir. Metrik ölçüm sisteminde uzaklık birimi metredir ve m sembolü ile gösterilir.

Matematikte Hilbert uzayı, sonlu boyutlu Öklit uzayında uygulanabilen lineer cebir yöntemlerinin genelleştirilebildiği ve sonsuz boyutlu da olabilen bir vektör uzayıdır. Daha kesin olarak, bir Hilbert uzayı, uzayın tam metrik uzay olmasını sağlayan bir uzaklık fonksiyonu üreten bir iç çarpımla donatılmış bir vektör uzayıdır. Bir Hilbert uzayı, bir Banach uzayının özel bir durumudur. Matematik, fizik ve mühendislikte sıkça kullanılmaktadır. Kuantum mekaniğiyle uyumludur. Adını David Hilbert'ten almaktadır.

Stefan Banach (Lehçe telaffuz: [ˈstɛfan ˈbanax] , genellikle dünyanın en önemli ve etkili 20. yüzyıl matematikçilerinden biri olarak kabul edilen Polonyalı bir matematikçiydi. Modern fonksiyonel analizin kurucusu ve Lwów Matematik Okulu'nun orijinal bir üyesiydi. En önemli eseri, genel fonksiyonel analiz teorisi üzerine ilk monografi olan 1932 tarihli Théorie des opérations linéaires kitabıdır.

Matematikte Öklid uzayı, Öklid geometrisinin üç boyutlu uzayıdır ve bu kavramlar, çok boyutlu olarak genelleştirilir. “Öklid” terimi bu uzayları, Öklid geometrisi olmayan eğimli uzaydan ve Einstein'nın genel görelilik kuramından ayırt eder. Bu adı Yunan matematikçi Öklid'den dolayı almıştır.
Matematik'te Lp uzayı, sonlu boyutlu vektör uzayı için p-norm'un doğal bir genelleme kullanarak tanımlı fonksiyon uzayı'dır.Bazen Lebesque uzayı denir.İlk Frigyes Riesz tarafından Bourbaki grubu Bourbaki 1987 olarak tanıtılmasına rağmen,Henri Lebesgue Dunford & Schwartz 1958, III.3, adına ithaf edilmiştir. fonksiyonal analiz'de Banach uzayı'nın ve topolojik vektör uzaylarının önemli bir sınıfını Lp uzayı formu oluşturur.Lebesgue uzayının fizik, istatistik, finans, mühendislik ve diğer disiplinlerde uygulamaları var.
Matematikte bir sabit nokta teoremi, bir F fonksiyonunun, genel terimlerle ifade edilmiş belli koşullar altında en az bir sabit noktası olduğunu ifade eden bir sonuçtur. Bu tür sonuçlar matematikte en çok kullanılanlar arasındadır.
Limit noktası, yığılma noktası veya yakınsama noktası, üzerinde bir metrik tanımlanmış bir kümenin, herhangi bir komşuluğunda kümenin başka elemanlarını barındıran noktalarıdır. Matematikte X topolojik uzayındaki S kümesinin limit noktası, bir x noktasıdır. Bu nokta X de olmalı, fakat her zaman S de olması gerekmez. Bu durumda x, S nin bir öğesi değildir. Bu durum limit gösterimlerinde genelleştirilir.

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

Bu sayfa dinamik sistemlere dair genel bakış açılarını içerir ayrıntılı bilgi için dinamik sistem (tanım) veya çalışmak amaçlı dinamik sistemler teorisine bakabilirsiniz.
Matematiksel analizde, M metrik uzay olmak üzere, elemanları M 'de olan her Cauchy dizisinin yine M'de bir limiti varsa,veya alternatif olarak, M'deki her Cauchy dizisi yine M'de yakınsaksa M metrik uzayına tam denir.

Bézout teoremi, cebirsel geometride n değişkenli n polinomun ortak sıfırlarının sayısı ile ilgili bir ifadedir. Orijinal biçiminde teorem, genel olarak ortak sıfırların sayısının, polinomların derecelerinin çarpımına eşit olduğunu belirtir. Adını Fransız matematikçi Étienne Bézout'dan almıştır.

Öklid geometrisinde, Batlamyus eşitsizliği, düzlemde veya daha yüksek boyutlu bir uzayda dört nokta tarafından oluşturulan altı uzunluğu ilişkilendirir. Herhangi bir A, B, C ve D noktası için aşağıdaki eşitsizliğin geçerli olduğunu belirtir:
.

Üçgen geometrisinde, üçgenin iç çemberi ve dokuz nokta çemberi, üçgenin Feuerbach noktasında birbirine içten teğettir. Feuerbach noktası bir üçgen merkezidir, yani tanımı üçgenin yerleşimine ve ölçeğine bağlı değildir. Clark Kimberling'in Üçgen Merkezleri Ansiklopedisi'nde X(11) olarak listelenmiştir ve adını Alman geometrici Karl Wilhelm Feuerbach'tan almıştır.
Geometride, Jung teoremi, herhangi bir Öklid uzayındaki bir dizi noktanın çapı ile bu kümenin minimum çevreleyen topunun yarıçapı arasındaki bir eşitsizliktir. Bu eşitsizliği ilk kez 1901'de inceleyen Heinrich Jung'un adını almıştır. En küçük çember problemini açık bir biçimde çözmek için algoritmalar da mevcuttur.
Matematiğin bir alt dalı olan fonksiyonel analizde, tam normlu vektör uzayılarına Banach uzayı denir. Tanımı gereği, Banach uzayı, vektör uzunluğunun ve vektörler arasındaki mesafenin hesaplanmasına vesile olan bir metriğe sahip bir vektör uzayıdır ve bu metrik uzayda herhangi bir Cauchy vektör dizisinin her zaman uzayın içinde kalan ve iyi tanımlanmış bir limiti olması anlamında tamdır.
Matematikte normlu vektör uzayı gerçel ya da karmaşık sayılar üzerinde tanımlanmış ve bir norm fonksiyonuna sahip olan vektör uzayıdır. norm fonksiyonu uzunluk kavramının genelleştirilmesi olarak düşünülebilir.