İçeriğe atla

Balmer serileri

Balmer serilerindeki hidrojenin görünür emisyon tayf çizgileri.Sağdaki kırmızı çizgi H-alfa çizgisidir. En soldaki iki çizgini dalga boyu 400 nm'den kısa olduğu için ulatraviyolet olarak adlandırılır.  

Atom fiziğinde Balmer serileri veya Balmer çizgileri hidrojen atomunun tayf çizgilerini emisyonu olan isimlendirilmiş altı serinin gösterimidir.. Balmer serileri Johann Balmer tarafından 1885'te deneysel olarak bulunmuş olan Balmer folmulü sayesinde hesaplanır.

Hidrojen kaynaklı görünür tayf ışığı dört dalga boyunda gözlemlenir:410 nm, 434 nm, 486 nm, 656 nm ve bu elektron kaynaklı foton yayılımı uyarılmış durumunun baş kuantum sayısı 2'ye geçerken gözlenir.[1] Dalga boyunun 400 nm'den kısa olduğu yerlerde de morötesi Balmer çizgilerinin sayısı vardır.

Genel Bakış

Balmer serileri elektronun n ≥ 3'ten n = 2'e geçişinde gözlenir, n baş kuantum sayısı ifade eder. Geçişler sırasıyla Yunan harfleriyle gösterilir: n = 3'ten n = 2'ye H-α, 4'ten 2'ye H-β, 5'ten 2'ye H-γ,ve 6'dan 2'ye H-δ. İlk tayf çizgileri elektromanyetiktayfın görünür kısmındaki seriler ile ilgilidir ve bu çizgiler tarihsel olarak "H-alfa", "H-beta" ve "H-gama" olarak adlandırılır ki "H" da hidrojen atomunun temsil eder.

'in Geçişi 3→2 4→2 5→2 6→2 7→2 8→2 9→2 →2
İsim H-α / Ba-α H-β / Ba-β H-γ / Ba-γ H-δ / Ba-δ H-ε / Ba-ε H-ζ / Ba-ζ H-η / Ba-η
Dalga boyu(nm) [2]656.3 486.1 434.1 410.2 397.0 388.9 383.5 364.6
Renk KırmızıDeniz mavisiMaviMavi (Morötesi) (Morötesi) (Ultraviolet) (Ultraviolet)

Fizikçiler 1885'ten önce atomik yayılımı bilmelerine rağmen, tayf çizgilerinin tam olarak nerede çıkacağını ölçecek ayetleri yoktu. Balmer hesaplamaları hidrojenin dört görünür yayılım çizgilerini yüksek doğrulukla öngördü. Balmer'in hesaplamaları Rydberg formülü genellenmesine ilham verdi ve hidrojenin diğer görünür tayfları olan Lyman, Paschen ve Brackett serilerinin bulunmasına öncülük etti.

Hidrojen gazının n=3'ten n=2'ye geçerken ürettiği H-alfa kırmızısı dünyanın belli renklerinden biridir. Bu, H II bölgesindeki Orion bulutsusundaki gibi, tayf yayımındaki parlak kırmızı rengini ortaya çıkmasına yardımcı olur. Normalde bu bulutsu Balmer serilerinin kombinasyonları sonucu belirgin olarak pembe gözükür.

Daha sonra, hidrojen tayfının çizgileri çok yüksek kararlılıkta incelendiğinde yakın aralıklarla ayrılmış çiftler olduğu bulundu. Bu ayrım ince yapı olarak adlandırılır. Aynı zamanda uyarılmış elektronlar Balmer serilerinin n=2'den n'in 6'dan büyük olduğu orbitallere kadar sıçrayabilir.

Döteryum lambasının tayf yayılımında iki Balmer çizgisi (α and β) açıkça görünmektedir.

Balmer'in formülü

Balmer görünür ışık bölgesinde hidrojen tayfındaki her çizginin ilgili olduğu bir sayı fark etti. Bu sayı 364.50682 nm'dir. Karesi olınmış ve 2'den büyük her sayı kendisine bölünüp eksi 4'le karesi alınır, sonra bu sayı 364.50682 ile çarpılarak hidrojen tayfındaki diğer çizgi bulunur(hesaplamalar aşağıda).Bu formülle Johann Balmer kendi zamanında spektroskopiyle yapılan ölçümlerin az miktarda hatalı olduğunu gösterebildi ve bu formül o zaman gözlemlenememiş ve daha sonra bulunacak olan bir takım çizgileri de öngördü. Johann Balmer'in sayısı serilerin limiti olduğunu da kanıtlamış oldu.

Balmer serisi dalga boyu yayılımını bulmakta kullanılır ve aşağıda belirtildiği (B Balmer sabitini tanımlar) gibi sunulmuştur:

dalga boyudur.
B 3.6450682×10−7 m ya da 364.50682 nm olan sabit değerdir.
m 2'ye eşittir.
n n > m olan bir tam sayıdır.

1888'de Johannes Rydberg adlı fizikçi bütün hidrojen dönüşümleri için Balmer denklemlerinin genellemesini yaptı. Balmer serilerini hesaplamak için kullanılan bu denklem Rydberg formülünün özgün bir örneğidir ve aşağıdaki basit işteş matematiksel düzenlemedir (genelde basit integral sabiti gerektiğinde m yerine n kullanılır):

λ yayılan ışığın dalga boyu, RH ise hidrojen için Rydberg sabitidir. Rydberg sabiti Balmer formülünde  iolarak alınır ve ağır atom çekirdeği için bu değer metre = 10,973,731.57 metre−1'dir.[3]

Astronomideki rolü

Balmer serileri astronomide oldukça önemlidir, çünkü evrendeki birçok yıldızımsı cisimde hidrojen bolluğu vardır ve genel olarak diğer elementlerle karsılaştırıldığında nispeten daha kuvvetlidir.

Yıldızları sınıflandırılmasında ilk olarak yüzey sıcaklığına bakılır, yüzey sıcaklığı tayfsal çizgilerin göreceli kuvvetine bağlıdır ve Balmer serileri burada çok önemlidir. Yıldızların diğer özellikleri yüzey kütleçekimi, yapısı dahil tayfının detaylı incelemesi sonucu belirlenir.

Balmer serileri genelde birçok cisimin tayfında kullanıldığı için, sık sık dikeyhızı Balmer çizgilerindeki doppler etkisiyle belirlemekte kullanılır. Bunun astronomide çift yıldızları, güneş dışı gezegenleri, nötron yıldızı ve kara delik gibi sıkıştırılmış cisimleri(hidrojenin toplanma disklerinde ve etrafındaki hareketinden) belirlemede, benzer hareketleri olan cisim gruplarını(hareketli gruplar,yıldız kümeleri, galaksi kümeleri ve çarpışma enkazları) tanımlamada, galaksilerin ve kuasarların mesafelerini belirlemede, bilinmedik cisimleri tanımlamada tayfları analiz ederek yapılan önemli kullanımları vardır.

Balmer çizgileri doğadaki cismin gözlenimine göre emilim ya da yayılım olarak görünebilir. Genellikle yıldızlarda balmer çizgileri emilim olarak görünür ve yıldızların yüzeyindeki 10,000 kelvine kadar ulaşan sıcaklıkla en güçlüleridir. Çoğu sarmal ve düzensiz galaksilerde, etkin galaksi çekirdeğinde, H II bölgesinde, gezegenimsi bulutsusunda Balmer çizgileri yayılım çizgileridir.

Yıldız tayfında, H-epsilon çizgisi (7'den 2'ye) sıklıkla astronomların "H"(orijinal isim Joseph von Fraunhofer tarafından verilmiştir) diye bildiği iyonize kalsiyum diğer emilim çizgileriyle karışmasına sebep olur. Yani, H-epsilon'un dalga boyu 396.847 nm'deki CaH'a çok yakındır. H-zeta çizgisi(8'den 2'ye) benzer bir şekilde sıcak çizgilerde görülen nötr helyum çizgisiyle karışmıştır.

Ayrıca bakınız

Notlar

  1. ^ C.
  2. ^ Eisberg and Resnick (1985). Quantum Physics. John Wiley and Sons. ss. 97. 
  3. ^ "CODATA Recommended Values of the Fundamental Physical Constants: 2006" (PDF). Committee on Data for Science and Technology (CODATA). NIST. 1 Mart 2015 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 14 Mayıs 2015. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Elektromanyetik radyasyon</span>

Elektromanyetik radyasyon, elektromanyetik ışınım, elektromanyetik dalga ya da elektromıknatıssal ışın bir vakum veya maddede kendi kendine yayılan dalgalar formunu alan bir olgudur. Elektromanyetik dalgalar, yüklü bir parçacığın ivmeli hareketi sonucu oluşan, birbirine dik elektrik ve manyetik alan bileşeni bulunan ve bu iki alanın oluşturduğu düzleme dik doğrultuda yayılan, yayılmaları için ortam gerekmeyen, boşlukta c ile yayılan enine dalgalardır. Elektromanyetik dalgalar, frekansına göre değişik tiplerde sınıflandırılmıştır. Bu tipler sırasıyla :

Elektromanyetik tayf veya elektromanyetik spektrum (EMS), evrenin herhangi bir yerinde fizik kurallarınca mümkün kılınan tüm elektromanyetik radyasyonu ve farklı ışınım türevlerinin dalga boyları veya frekanslarına göre bu tayftaki rölatif yerlerini ifade eden ölçüt. Herhangi bir cismin elektromanyetik tayfı veya spektrumu, o cisim tarafından çevresine yayılan karakteristik net elektromanyetik radyasyonu tabir eder.

Planck sabiti (h), bir fizik sabitidir ve kuantum mekaniğindeki aksiyonum kuantumu için kullanılır. Değeri h= 6.62607015×10−34 J⋅s' dir. Planck sabiti daha önceleri bir Fotonun enerjisi (E) ile elektromanyetik dalgasının frekansı (ν) arasında bir orantı idi. Enerji ile frekans arasındaki bu ilişki Planck ilişkisi veya Planck formülü olarak adlandırılır:

<span class="mw-page-title-main">Süpernova</span> Büyük Yıldızların Ölümü

Süpernova, enerjisi biten büyük yıldızların şiddetle patlaması durumuna verilen addır. Bir süpernovanın parlaklığı Güneş'in parlaklığının yüz milyon katına varabilir.

<span class="mw-page-title-main">Enerji seviyesi</span>

Enerji seviyesi, atom çekirdeğinin etrafında katman katman biçiminde bulunan kısımların her biridir. Bu yörüngelerde elektronlar bulunur. Yörüngenin numarası; 1, 2, 3, 4, ... gibi sayı değerlerini alabilir. Yörünge numarasına baş kuantum sayısı da denir ve "n" ile gösterilir. Yörünge numarası ile yörüngenin çekirdeğe uzaklığı doğru orantılıdır.

<span class="mw-page-title-main">T Tauri yıldızı</span> Genç değişken yıldızlar sınıfı

T Tauri yıldızları, on milyon yıldan genç olan bir değişken yıldızlar sınıfıdır. Genelde moleküler bulutların yakınlarında bulunup, değişken ışıksallıkları ve güçlü renkyuvarı çizgileri ile tanınırlar.

<span class="mw-page-title-main">Kuasar</span> Gazca zengin, çok yüksek enerjili astronomik cisim

Kuasar, kütlesi milyonlarca ila on milyarlarca güneş kütlesi arasında değişen, bir gaz diski ile çevrili bir süper kütleli kara delik tarafından desteklenen son derece parlak bir aktif galaksi çekirdeğidir (AGN). Kara deliğe doğru düşen diskteki gaz sürtünme nedeniyle ısınır ve elektromanyetik radyasyon şeklinde enerji açığa çıkarır. Kuasarların ışıma enerjisi muazzamdır; en güçlü kuasarlar, Samanyolu gibi bir galaksiden binlerce kat daha fazla parlaklığa sahiptir.

Rydberg formülü uyarılmış hidrojen atomundan yayılan elektromanyetik ışınımın dalga boyunun hesaplanmasında kullanılan ve İsveçli fizikçi Johannes Rydberg (1854-1919) tarafından geliştirilen bir formüldür. Bu formül atom yapısının anlaşılmasında büyük rol oynamıştır.

Rydberg sabiti, Rydberg formülündeki sabittir ve uyarılmış hidrojen atomunun yaydığı elektromanyetik ışınımın dalgaboyunun hesaplanmasında kullanılır. Bu sabit adını İsveçli fizikçi Johannes Rydberg'ten (1854-1919) almıştır. Sabitin sayısal değeri fizikte kullanılan diğer sabitlerden türetilmiştir.

Gök aydınlığı veya gece aydınlığı, gezegen atmosferlerinin yaydığı çok zayıf bir ışıktır. Dünya ele alınacak olursa, bu olgu geceleri gökyüzünün hiçbir zaman tamamen karanlıkta kalmamasına neden olur. Bu durum yıldızlardan gelen ışıklar ve güneş ışınlarının atmosferde yayılımı denklemden çıkarıldığında dahi geçerlidir.

<span class="mw-page-title-main">Johann Jakob Balmer</span> Matematikçi ve fizikçi

Johann Jakob Balmer, İsviçreli matematikçi ve matematiksel fizikçidir.

<span class="mw-page-title-main">Seyfert galaksisi</span> Galaksi

Seyfert Galaksileri, kuasarlar içinde aktif galaksiler içinde en büyük iki gruptan birini teşkil eder. Bunlar, kuasarlardan farklı olarak, ev sahibi galaksileri kolayca tespit edilebilen, yüksek iyonizasyon emisyon hatları ortaya çıkartan spektrumları olan oldukça yüksek yüzey parlaklıkları ile kuazar benzeri çekirdeklere sahiptirler.

<span class="mw-page-title-main">Rydberg atomu</span>

Rydberg atomu çok yüksek temel nicem sayılı bir veya iki elektrona sahip bir uyarılmış atomdur Bu atomlar elektrik ve manyetik alana abartılı tepkiler vermeyi de içinde barındıran, uzun bozunma devri ve yaklaşık elektron dalgafonksiyonları, bazı şartlar altında çekirdekler etrafındaki elektronların klasik yörüngeleri gibi kendilerine has birçok özelliğe sahiptir. Çekirdek elektronları dış elektronları çekirdeğin elektrik alanından kalkanlar, öyle ki belirli bir mesafeden hidrojen atomundaki bir elektronun tecrübe ettiği gibi elektrik potansiyeli belirleyicidir.

<span class="mw-page-title-main">Göreli Doppler etkisi</span>

Relativistik Doppler Etkisi ya da Göreli Doppler etkisi, adını ünlü bilim insanı ve matematikçi Christian Andreas Doppler'dan almakta olup, kısaca dalga özelliği gösteren herhangi bir fiziksel varlığın frekans dalga boyu Dalga boyu, bir dalga görüntüsünün tekrarlanan birimleri arasındaki mesafedir. Yaygın olarak Yunanca lamda (λ) harfi ile gösterilmektedir. hareketli bir gözlemci tarafından farklı zaman ve/veya konumlarda farklı algılanması olayıdır. Bu da göreli olduğunu belirtir. Herhangi bir A konumundan B konumuna gitmek icin fiziksel bir dalga ortamı'na ihtiyaç duyan dalgalar icin Doppler Etkisi hesaplamaları yapılırken, dalga kaynağı ve gözlemcinin birbirine göre konum, yön ve hızlarının yanında dalganın içinde veya üzerinde hareket ettiği dalga ortamının da fiziksel yapısı dikkate alınmak zorundadır. Eğer söz konusu dalga herhangi bir A konumundan B konumuna gitmek için fiziksel bir dalga ortamına ihtiyaç duymuyor ise Doppler Etkisi hesaplamalarında sadece dalga kaynağının ve gözlemcinin birbirine göre birim zamandaki konumlarının değerlendirilmesi yeterlidir. Göreli doppler olayı değişikliği olduğu frekansa ışık kaynağının göreceli hareketine göredir ve, Göreli Doppler etkisi relativistik olmayan farklı Doppler etkisi denklemleri dahil olarak zaman genişlemesi etkisini özel görelilik ve referans noktası olarak yayılma ortamı dahil değildir. Lorentz simetri gözlenen frekanslar için toplam farkı anlatır.

<span class="mw-page-title-main">Hidrojen spektrumu serileri</span>

Hidrojen tayfı serileri Bohr modeline göre, baş kuantum sayısına (n) bağlı olarak uyarılmış hidrojen atomunun ışıması serileridir.Atomik hidrojenin emisyon spektrumu, Rydberg formülüyle elde edilen dalgaboylarına göre birkaç tayf serisine ayrılmıştır.

<span class="mw-page-title-main">Paschen serisi</span>

Paschen serisi atom fiziğinde uyarılmış atomların yaydığı ışığın dalga boyunu (λ) gösteren serilerden biridir. Seri adını Alman fizikçi Friedrich Paschen'den (1865-1947) alır. Paschen, bu serileri 1908 de bulmuştur. Rydberg formülüne göre uyarılmış bir atomda 3. enerji düzeyindeki elektronların enerji düzeylerini değişirken şu şekilde ışınım yaparlar:

Brackett serisi atom fiziğinde uyarılmış atomların yaydığı ışığın dalga boyunu (λ) gösteren serilerden biridir. Seri adını Amerikalı fizikçi Frederick Sumner Brackett’den (1896-1988) alır. Brackett bu serileri 1922 yılında de bulmuştur. Rydberg formülüne göre uyarılmış bir atomda 4. enerji düzeyindeki elektronların enerji düzeylerini değişirken şu şekilde ışınım yaparlar:

Pfund serisi atom fiziğinde uyarılmış atomların yaydığı ışığın dalga boyunu (λ) gösteren serilerden biridir. Seri adını Alman fizikçi August Herman Pfund'dan (1879-1949) alır.

<span class="mw-page-title-main">B-tipi ana kol yıldızı</span> yıldız sınıflandırma

B-tipi ana kol yıldızı, tayf tipi B ve aydınlatma sınıfı V olan ana kol (hidrojen-yakan) yıldızıdır. Kütleleri Güneş'ten 2 ile 16 kat daha fazla ve yüzey sıcaklıkları 10.000 ile 30.000 K arasındadır. B-tipi yıldızlar son derece parlak ve mavidir. Spektrumları, en çok B2 alt sınıfında ve orta derecede hidrojen çizgilerinde göze çarpan nötr helyuma sahiptir. Örnekler arasında Regulus ve Algol A sayılabilir.

<span class="mw-page-title-main">Johannes Rydberg</span> İsveçli fizik profesörü

Johannes (Janne) Robert Rydberg, 1888'de Rydberg formülünü geliştirmesiyle tanınan İsveçli bir fizikçiydi.