İçeriğe atla

Bağımsızlık (olasılık teorisi)

Olasılık kuramında iki olayın bağımsız olması bu olaylardan birinin gerçekleşme olasılığının diğer olayın gerçekleşip gerçekleşmediğine bağlı olmaması anlamına gelmektedir. Örneğin;

  • Bir zarın ilk atışta 6 gelmesi olayı ile ikinci atışta 6 gelmesi olayı bağımsızdır.
  • Öte yandan, bir zarın ilk atışta 6 gelmesi olayı ilk iki atış sonunda elde edilen sayılar toplamının 8 olması olayına bağlıdır.
  • Bir kart destesinden seçilen ilk kartın kırmızı olması olayı ile ikinci kartın aynı renkte olması olayı bağımsızdır (kart seçimi yapıldıktan sonra deste ilk haline getiriliyorsa). Ne var ki, seçilen kartın desteye geri konulmaması durumunda bu iki olay bağımlıdır.

Benzer biçimde, iki rassal değişkenin bağımsız oluşu bu değişkenlerden birinin değerinin diğerinden önce gözlenmemiş oluşuna bağlıdır. Bağımsızlık kavramı ikiden fazla olay ya da rassal değişken barındıran durumlara da uygulanabilmektedir.

"Bağımsız" terimi zaman zaman "istatistiksel olarak bağımsız", "sınırdan bağımsız" ya da "mutlak bağımsız" olarak da kullanılmaktadır.[1]

Bağımsız olaylar

Bağımsızlık şu biçimde tanımlanabilir:

A ve B olayları ancak ve ancak Pr(AB) = Pr(A)Pr(B) koşulu sağlanıyorsa bağımsızdırlar.

Burada AB, A ve B'nin kesişimini (A ve B olaylarının birlikte gerçekleştiği durumu) göstermektedir.

Daha genel anlamda, bir olay dizisi bu dizinin herhangi bir sonlu altkümesinin

koşulunu sağlaması durumunda karşılıklı bağımsızdır. Bu olgu bağımsız olaylar için çarpım kuralı olarak adlandırılmaktadır.

A ve B olayları bağımsız ise, B olayının gerçekleşmiş olduğu bilinmek üzere A'nın koşullu olasılığı bu olayın koşulsuz olasılığına eşittir.

Tüm bunlara karşın, bu ifadelerin bağımsızlık kavramının tam tanımını oluşturduğu söylenemez. Bunun nedeni, ifadede yer alan A ve B olaylarının yerlerinin değiştirilemeyecek oluşu ve bu tanımın olasılığın 0 olduğu durumlarda geçersiz kalmasıdır.

B'nin gerçekleşmiş olduğu bilinmek üzere A'nın koşullu olasılığı

(Pr(B) ≠ 0 olduğu sürece)

biçiminde tanımlanmaktadır.

iken bu ifade

olarak da yazılabilir.

Burada sözü edilen bağımsızlık kavramı konuşma dilindeki karşılığından farklı bir anlam taşımaktadır. Örneğin, bir olayın kendinden bağımsız olması ancak ve ancak

koşulunun sağlanması durumunda gerçekleşebilir. Başka bir deyişle, bir olay ya da onun tümleyeni neredeyse kesin olarak gerçekleşiyorsa bu olay kendinden bağımsızdır.

Bağımsız rassal değişkenler

X gerçel değerli bir rassal değişken ve a bir sayı olmak üzere, {X ≤ a} olayı X'in a'dan küçük ya da ona eşit olduğu gözlemlerin oluşturduğu küme olarak tanımlanmaktadır.

X ve Y rassal değişkenleri ancak ve ancak {X ≤ a} ve {Y ≤ b} olaylarının bağımsız olması durumunda bağımsızdırlar. Benzer biçimde, rastgele seçilmiş değişkenlerin oluşturduğu bir kümenin bağımsız oluşu herhangi bir sonlu X1, …, Xn yığını ve a1, …, an sayı dizisi için {X1 ≤ a1}, …, {Xn ≤ an} olaylarının bağımsız olmasına bağlıdır.

Bir yığından seçilen herhangi iki rassal değişken bağımsız ise bu değişkenlerin karşılıklı bağımsızlıkları da güvence altındadır. Bu olgu parçalı bağımsızlık olarak adlandırılmaktadır.

X ve Y bağımsız ise, E beklenti işleci

E[X Y] = E[X] E[Y]

koşulunu sağlar. Varyans için

var(X + Y) = var(X) + var(Y)

eşitliği yazılabilirken kovaryans cov(X,Y) sıfıra eşittir. Bu ifadenin tersi ("iki rassal değişkenin kovaryansı 0 ise bu değişkenler bağımsızdırlar" önermesi) doğru değildir.

Bunlara ek olarak, iki tane X ve Y rassal değişkeni, FX(x) ve FY(y) dağılım fonksiyonları ve fX(x) ve fY(y) olasılık yoğunlukları gösteriyorlarsa, bu iki rassal değişkenin birbirinden bağımsız olmaları için, bileşik rassal değişken (X,Y) nin şu ortak dağılımı olması gerekir:

FX,Y(x,y) = FX(x)FY(y),

ya da buna eşit olarak

fX,Y(x,y) = fX(x)fY(y).

ortak yoğunluk göstermelidir.

İki rassal değişkenden daha fazla sayıda rassal değişkenler olma halinde bağımsızlık da daha genel olarak buna benzer ifadeler ile karakterize edilirler.

Koşullu bağımsız rassal değişkenler

Sezgi ile ele alınırsa, iki rassal değişken X ve Y nin birbirinden koşullu bağımsız olmaları için, bir Z verilirse ve eğer Z değeri bilinirse, Y değerini bilmenin X hakkında bilgimize hiçbirsey eklememesi gerekir. Örnegin, altlarından Z miktarına bağlılıkları olduğu kabul edilen, X ve Y değişkeni ölçümleri birbirinden bağımsız değildir; ama (iki olçümdeki yapılan hatalar herhangi bir şekilde birbirine ilişkili değilse) 'bu iki değişken, verilmiş bir Z şartına bağlı koşutlu değişkenlerdir.

Koşullu bağımsızlık kavramının daha formel bir tanımlaması koşullu dağılım kavramına dayandırılır. Eğer X, Y ve Z ayrık rassal değişken iseler, o halde X ve Y değişkenlerinin Z verilmişine koşullu bağımsız olmaları için şart şudur: Her x, y ve z için P(Z ≤ z) > 0 olursa

Diğer taraftan, eğer X, Y ve Z sürekli rassal değişken iseler ve p ortak olasılık yoğunluk fonksiyonu bulunmakta ise; o halde X ve Y değişkenlerinin Z verilmişine koşullu bağımsız olmaları için şart şudur: Her x, y ve z gerçel sayılar için pZ(z) > 0 olursa

Bu demektir ki Y ve Z verilirse X için koşullu dağılım, sadece Z için dağılımın aynıdır. Sürekli halde de koşutlu olasılık yoğunluk fonksiyonları için de bir benzer denklem verilebilir.

Olasılık bir çeşit hiç verilmiş olay olmayan koşutlu olasılık olduğu için, bağımsızlık koşutlu bağımsızlığın özel bir hali olarak görülebilir.

Kaynakça

  1. ^ Russell, Stuart (2002). Artificial Intelligence: A Modern Approach. Prentice Hall. ss. 478. ISBN 0137903952. 

İlgili Araştırma Makaleleri

Olasılık kuramı ve istatistik bilim dallarında varyans bir rassal değişken, bir olasılık dağılımı veya örneklem için istatistiksel yayılımın, mümkün bütün değerlerin beklenen değer veya ortalamadan uzaklıklarının karelerinin ortalaması şeklinde bulunan bir ölçüdür. Ortalama bir dağılımın merkezsel konum noktasını bulmaya çalışırken, varyans değerlerin ne ölçekte veya ne derecede yaygın olduklarını tanımlamayı hedef alır. Varyans için ölçülme birimi orijinal değişkenin biriminin karesidir. Varyansın karekökü standart sapma olarak adlandırılır; bunun ölçme birimi orijinal değişkenle aynı birimde olur ve bu nedenle daha kolayca yorumlanabilir.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

Rassal değişken kavramının geliştirilmesi ile, sezgi yoluyla anlaşılan şans kavramı, soyutlaştırarak teorik matematik analiz alanına sokulmuş ve bu geliştirilen matematik kavram ile olasılık kuramı ve matematiksel istatistiğin temeli kurulmuştur.

Merkezi limit teoremi büyük bir sayıda olan bağımsız ve aynı dağılım gösteren rassal değişkenlerin aritmetik ortalamasının, yaklaşık olarak normal dağılım göstereceğini ifade eden bir teoremdir. Matematiksel bir ifadeyle, bir merkezi limit teoremi olasılık kuramı içinde bulunan bir zayıf yakınsama sonucu setidir. Bunların hepsi, birçok bağımsız aynı dağılım gösteren rassal değişkenlerin herhangi bir toplam değerinin limitte belirli bir "çekim gücü gösteren dağılıma" göre dağılım gösterme eğiliminde olduğu gerçeğini önerir.

Bernoulli dağılımı olasılık kuramı ve istatistik bilim dallarında, p olasılıkla başarı ile 1 değeri alan ve olasılıkla başarısızlık ile 0 değeri alan bir ayrık olasılık dağılımıdır. İsmi ilk açıklamayı yapan İsviçreli bilim insanı Jakob Bernoulli anısına verilmiştir.

<span class="mw-page-title-main">Geometrik dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında geometrik dağılım şu iki şekilde ifade edilebilen ayrık olasılık dağılımıdır:

Bir olasılık dağılımı bir rassal olayın ortaya çıkabilmesi için değerleri ve olasılıkları tanımlar. Değerler olay için mümkün olan tüm sonuçları kapsamalıdır ve olasılıkların toplamı bire eşit olmalıdır. Örneğin, bir rassal olay olarak madeni paranın tek bir defa havaya atılıp yere düşmesi ele alınsın; değerler 'yazı' veya 'tura' veya bunlar isimsel değişken ölçeğinde ifade edilirse 0 (yazı) veya 1 (tura) olur; olasılıklar ise her iki değer için ½ olacaktır. Böylece madeni bir paranın tek bir defa atılma olayı için iki değer ve ilişkili iki olasılık bu rassal olayın olasılık dağılımı olur. Bu dağılım ayrık olasılık dağılımıdır; çünkü sayılabilir şekilde ayrı ayrı sonuçlar ve bunlara bağlı olan pozitif olasılıklar vardır.

<span class="mw-page-title-main">Üstel dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında üstel dağılımı bir sürekli olasılık dağılımları grubudur. Sabit ortalama değişme haddinde ortaya çıkan bağımsız olaylar arasındaki zaman aralığını modelleştirirken bir üstel dağılım doğal olarak ortaya çıkar.

<span class="mw-page-title-main">Laplace dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında Laplace dağılımı Pierre-Simon Laplace anısına isimlendirilmiş bir sürekli olasılık dağılımıdır. Arka arkaya birbiriyle yapıştırılmış şekilde ve bir de konum parametresi dahil edilerek birleştirilmiş iki üstel dağılımdan oluştuğu için, çift üstel dağılımı adı ile de anılmaktadır. İki bağımsız ve tıpatıp aynı şekilde üstel dağılım gösteren bir rassal değişken bir Laplace dağılımı ile işlev görürler. Bu, aynen üstel dağılım gösteren rassal zamanda değerlendirilen Brown devinimine benzer.

Olasılık teorisi ya da ihtimaliyet teorisi rastgele olayların analizi ile ilgilenen bir matematik bilim dalıdır. Olasılık teorisinin ana ögeleri rassal değişkenler, saf rassal süreçler, olaylar olarak sayılabilir. Bunlar ya tek olarak ortaya çıkan veya bir zaman dönemi içinde gelişerek meydana gelen, ilk görünüşü rastgele bir şekilde olan deterministik olmayan olayların veya ölçülebilir miktarların matematiksel soyutlamalarıdır. Bir madeni parayı yazı-tura denemesi için havaya atmak veya bir zarı atmak ile ortaya çıkan sonuç ilk bakışta rastgele bir olay olarak görülebilirse bile eğer birbirini takip eden rastgele olaylar tekrar tekrar ortaya çıkartılırsa incelenebilecek ve tahmin edilebilecek belirli bir istatistiksel seyir takip ettikleri görülecektir. Bu türlü olaylar ve sonuçların seyirlerini betimleyen iki temsilci matematiksel sonuç büyük sayılar yasası ve merkezsel limit teoremidir.

<span class="mw-page-title-main">Ayrık olasılık dağılımları</span>

Olasılık kuramı içinde bir olasılık dağılımı eğer bir olasılık kütle fonksiyonu ile karakterize edilmiş ise ayrık olarak anılır. Böylelikle bir rassal değişken olan X için dağılım ayrık ise o zaman X bir ayrık rassal değişken olarak bilinir. Bu halde

Olasılık kuramı ve istatistik bilim dallarında birikimli dağılım fonksiyonu bir reel değerli rassal değişken olan Xin olasılık dağılımını tümüyle tanımlayan bir fonksiyondur. Olasılık dağılım fonksiyonu veya sadece dağılım fonksiyonu olarak da anılmaktadır. Her bir reel sayı olan x için X'in birikimli dağılım fonksiyonu şöyle ifade edilir:

Olasılık kuramı ve istatistik bilim dallarında bir rassal değişken X için olasılık yoğunluk fonksiyonu bir reel sayılı sürekli fonksiyonu olup f ile ifade edilir ve şu özellikleri olması gereklidir:

Olasılık kuramı içinde herhangi bir rassal değişken için karakteristik fonksiyon, bu değişkenin olasılık dağılımını tüm olarak tanımlar. Herhangi bir rassal değişken X için, gerçel doğru üzerinde, bu fonksiyonu tanımlayan formül şöyle yazılır:

Olasılık kuramı bilim dalında matematiksel beklenti veya beklenen değer veya ortalama birçok defa tekrarlanan ve her tekrarda mümkün tüm olasılıklarını değiştirmeyen rastgele deneyler sonuçlarından beklenen ortalama değeri temsil eder. Bir ayrık rassal değişkennin alabileceği bütün sonuç değerlerin olasılıklarıyla çarpılması ve bu işlemin bütün değerler üzerinden toplanmasıyla elde edilen değerdir. Bir sürekli rassal değişken için rassal değişken ile olasılık yoğunluk fonksiyonunun çarpımının aralığı belirsiz integralidir. Fakat dikkat edilmelidir ki bu değerin genel pratik anlamla rasyonel olarak beklenmesi pek uygun olmayabilir, çünkü matematiksel beklentiin olasılığı çok düşük belki sıfıra çok yakın olabilir ve hatta pratikte matematiksel beklenti bulunmaz. Ağırlıklı ortalama olarak da düşünülebilir ki değerler ağırlık katsayıları verilen olasılık kütle fonksiyonu veya olasılık yoğunluk fonksiyonudur.

Koşullu beklenti, koşullu beklenen değer veya koşullu ortalama, olasılık kuramı bilim dalında bir reel değerli rassal değişken için bir koşullu olasılık dağılımı na göre matematiksel beklentidir.

Güven aralığı, istatistik biliminde bir anakütle parametresi için bir çeşit aralık kestirimi olup bir çıkarımsal istatistik çözüm aracıdır. Bir anakütle parametre değerinin tek bir sayı ile kestirimi yapılacağına, bu parametre değerini kapsayabilecek iki sayıdan oluşan bir aralık bulunur. Böylece güven aralıkları bir kestirimin ne kadar güvenilir olduğunu gösterir.

Olasılık teorisinde, zincir kuralı, yalnızca koşullu olasılıkları kullanarak bir rassal değişkenler kümesinin ortak dağılımının herhangi bir üyesinin hesaplanmasına izin verir. Kural, koşullu olasılıklar açısından bir olasılık dağılımını tanımlayan Bayes ağları çalışmasında kullanışlıdır.

<span class="mw-page-title-main">Ortak olasılık dağılımı</span>

Ortak olasılık dağılımı ya da birleşik olasılık dağılımı, sayıları birden fazla olan rassal değişkenlerinin birlikte gerçekleşmelerinin olasılık dağılımıdır.

<span class="mw-page-title-main">Bir olayın olma olasılığı</span>

Olasılık yoğunluk fonksiyonu, olasılık kuramı ve bir olayın olma olasılığı dallarında bir rassal değişken olan X için reel sayılı sürekli fonksiyondur.