İçeriğe atla

Bağımsız ve özdeş dağılmış rastgele değişken

Olasılık teorisi ve istatistikte, rastgele değişkenler topluluğu, her bir rastgele değişken diğerleriyle aynı olasılık dağılımına sahipse ve hepsi karşılıklı olarak bağımsızsa, bağımsız ve özdeş dağılmış rastgele değişkendir.[1] Bu özellik genellikle i.i.d. veya iid veya IID olarak kısaltılır. IID ilk olarak istatistikte kullanılmıştır. Bilimin gelişmesiyle birlikte IID, veri madenciliği ve sinyal işleme gibi farklı alanlarda uygulanmıştır.

Kaynakça

  1. ^ "A brief primer on probability distributions" (PDF). Santa Fe Institute. 2011. 20 Ocak 2012 tarihinde kaynağından (PDF) arşivlendi. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">İstatistik</span>

İstatistik veya sayım bilimi, belirli bir amaç için veri toplama, tablo ve grafiklerle özetleme, sonuçları yorumlama, sonuçların güven derecelerini açıklama, örneklerden elde edilen sonuçları kitle için genelleme, özellikler arasındaki ilişkiyi araştırma, çeşitli konularda geleceğe ilişkin tahmin yapma, deney düzenleme ve gözlem ilkelerini kapsayan bir bilimdir. Belirli bir amaç için verilerin toplanması, sınıflandırılması, çözümlenmesi ve sonuçlarının yorumlanması esasına dayanır. Bu çerçevede yapılan işlemlerin tümüne sayımlama denir.

<span class="mw-page-title-main">PageRank</span>

PageRank, Google tarafından geliştirilen ve web sayfalarının önemini belirlemek için kullanılan bir algoritmadır. İnternet üzerindeki bağlantıların analiz edilmesiyle hesaplanan Pagerank değeri Google Arama sonuçlarında sayfaların sıralanması için kullanılan faktörlerden biridir.

Örnekleme istatistikte belirli bir yığından alınan kümeyi ifade eder. Örneğin; Türkiye'deki tüm üniversite sayıları bir yığın iken Ankara'daki üniversite sayısı bu yığından alınmış bir örnektir.

Varyans Analizi istatistik bilim dalında, grup ortalamaları ve bunlara bağlı olan işlemleri analiz etmek için kullanılan bir istatistiksel modeller koleksiyonudur. Varyans Analizi kullanılmaktayken belirlenmiş bir değişkenin gözlemlenen varyansı farklı değişim kaynaklarına dayandırılabilen varyans bileşenine ayrılır. En basit şekliyle varyans analizi birkaç grubun ortalamalarının birbirine eşit mi eşit değil mi olduğunu sınamak için bir çıkarımsal istatistik sınaması olur ve bu sınama iki-grup için yapılan t-test sınamasını çoklu-gruplar için genelleştirir. Eğer, çoklu değişkenli analiz için birbiri arkasından çoklu iki-örneklemli-t-sınaması yapmak istenirse bunun I. tip hata yapma olasılığını artırma sonucu doğurduğu aşikardır. Bu nedenle, üç veya daha fazla sayıda ortalamaların ististiksel anlamlığının sınama ile karşılaştırılması için Varyans Analizleri daha faydalı olacağı gerçeği ortaya çıkmaktadır.

Bir olasılık dağılımı bir rassal olayın ortaya çıkabilmesi için değerleri ve olasılıkları tanımlar. Değerler olay için mümkün olan tüm sonuçları kapsamalıdır ve olasılıkların toplamı bire eşit olmalıdır. Örneğin, bir rassal olay olarak madeni paranın tek bir defa havaya atılıp yere düşmesi ele alınsın; değerler 'yazı' veya 'tura' veya bunlar isimsel değişken ölçeğinde ifade edilirse 0 (yazı) veya 1 (tura) olur; olasılıklar ise her iki değer için ½ olacaktır. Böylece madeni bir paranın tek bir defa atılma olayı için iki değer ve ilişkili iki olasılık bu rassal olayın olasılık dağılımı olur. Bu dağılım ayrık olasılık dağılımıdır; çünkü sayılabilir şekilde ayrı ayrı sonuçlar ve bunlara bağlı olan pozitif olasılıklar vardır.

<span class="mw-page-title-main">Tekdüze dağılım (sürekli)</span> Özel olasılık dağılımı

Sürekli tekdüze dağılım (İngilizce: continuous uniform distribution) olasılık kuramı ve istatistik bilim dallarında, her elemanı, olasılığın desteklendiği aynı büyüklükteki aralık içinde bulunabilir, her sürekli değer için aynı sabit olasılık gösteren bir olasılık dağılımları ailesidir. Desteklenen aralık iki parametre ile, yani minimum değer a ve maksimum değer b ile, tanımlanmaktadır. Bu dağılım kısa olarak U(a,b) olarak anılır.

Olasılık teorisi ya da ihtimaliyet teorisi rastgele olayların analizi ile ilgilenen bir matematik bilim dalıdır. Olasılık teorisinin ana ögeleri rassal değişkenler, saf rassal süreçler, olaylar olarak sayılabilir. Bunlar ya tek olarak ortaya çıkan veya bir zaman dönemi içinde gelişerek meydana gelen, ilk görünüşü rastgele bir şekilde olan deterministik olmayan olayların veya ölçülebilir miktarların matematiksel soyutlamalarıdır. Bir madeni parayı yazı-tura denemesi için havaya atmak veya bir zarı atmak ile ortaya çıkan sonuç ilk bakışta rastgele bir olay olarak görülebilirse bile eğer birbirini takip eden rastgele olaylar tekrar tekrar ortaya çıkartılırsa incelenebilecek ve tahmin edilebilecek belirli bir istatistiksel seyir takip ettikleri görülecektir. Bu türlü olaylar ve sonuçların seyirlerini betimleyen iki temsilci matematiksel sonuç büyük sayılar yasası ve merkezsel limit teoremidir.

Olasılık kuramı içinde bir olasılık dağılımı, eğer yığmalı dağılım fonksiyonu bir sürekli fonksiyon ise dağılım da sürekli olarak anılır. Bu demektir ki incelenmekte olan dağılımı gösteren X rassal değişkeni için; tüm reel sayı olan a için

Pr[X = a] = 0
<span class="mw-page-title-main">Büyük sayılar yasası</span>

Büyük Sayılar Kanunu ya da Büyük Sayılar Yasası, bir rassal değişkenin uzun vadeli kararlılığını tanımlayan bir olasılık teoremidir. Sonlu bir beklenen değere sahip birbirinden bağımsız ve eşit dağılıma sahip bir rassal değişkenler örneklemi verildiğinde, bu gözlemlerin ortalaması sonuçta bu beklenen değere yakınsayacak ve bu değere yakın bir seyir izleyecektir.

Olasılık teorisinde ve istatistikte bir olayın lehine olan olasılıklar oranı, p / 'dir, burada p bu olayın olasılığıdır. Bu olayın aleyhine olan olasılıklar oranı da (1 − p) / p 'dir.

<span class="mw-page-title-main">Sonsuz maymun teoremi</span> Bir matematik teoremi

Sonsuz maymun teoremi, bir daktilonun tuşlarına sonsuz bir süre boyunca gelişigüzel basan bir maymunun belirli bir metni neredeyse kesin olarak yazabileceğini ortaya koyan matematik teoremidir.

Rastgele dizi rastgele değişkenlerden oluşan bir dizidir.

Olasılık kuramında iki olayın bağımsız olması bu olaylardan birinin gerçekleşme olasılığının diğer olayın gerçekleşip gerçekleşmediğine bağlı olmaması anlamına gelmektedir. Örneğin;

Rastgele sayı üretici herhangi bir örüntü barındırmayan bir sayı ya da simgeler dizisi üreten berimsel ya da fiziksel aygıttır. Rastgele sayı üretiminde sıkça kullanılan donanım tabanlı sistemler genellikle beklentilerin altında kalmaktadırlar. Ne var ki, bu sistemlerin tahmin edilmesi oldukça güç sayı dizileri ortaya koydukları da açıktır. Rastgele sayı üretim yöntemleri eskiden bu yana ilgi konusu olmuştur.

Tek anakütle ortalaması için parametrik hipotez sınaması veya tek-örneklem için sınama veya μ için sınama, bir rastgele örneklem ortalaması ile bu örneklemin çekilmiş olduğunu düşündüğümüz anakütlenin μ ile belirtilen "anakütle ortalaması" hakkında bir hipotez değeri belirtilmesinin anlamlı olup olmadığını araştırmamızı sağlayan parametrik hipotez sınamasıdır.

Çıkarımsal istatistikte, boş hipotez, sıfır hipotez ya da sıfır hipotezi, beklenenin dışında bir durumun olmadığını, mesela gruplar ya da değişkenler arasında bir ilişki bulunmadığını veya ölçülen iki olgunun arasında bir fark olmadığını kabul eden genel bir önermedir. Örneğin tıpta, denenen bir tedavinin etkisiz olması; hukukta, sanığın suçsuz olması birer boş hipotezdir. Modern bilim hipotezler üretip bunları test ederek ilerler; bir boş hipotezinin belirli bir güvenilirlik aralığında istatistiksel olarak kabul ya da reddedilmesi hipotez testleriyle yapılmaktadır.

Kaman Kalehöyük, Kırşehir İl merkezinin kuzeybatısında, Kaman İlçesi'nin 3 km. doğu-kuzeydoğusunda yer alan bir höyüktür. Tepe yaklaşık 280 metre çapında olup 16 metre yüksekliktedir.

Stokastik süreç, Stokastik işlemi, zaman veya mekana göre değişen/evrilen olguları tanımlamak için kullanılan bir olasılık modelidir. Daha kapsamlı olarak, olasılık teorisinde, stokastik süreç, değişimi rastgele bir varyasyona bağlı olan bir değişken tarafından temsil edilen bazı sistemlerin gelişimini yansıtan bir zaman dizisidir. Bu, belirleyici süreç anlamına gelen deterministik sürecin olasılıkçı muadilidir. Sadece tek yönlü olarak değişebilen bir süreci tasvir etmek yerine bir stokastik veya rastgele süreçte, bazı belirsizlikler vardır. Hatta başlangıçtaki durum biliniyor olsa dahi sürecin gelişebileceği/değişebileceği bazı yönler vardır. Birçok stokastik süreçte, bir sonraki duruma veya konuma geçiş, yalnızca mevcut duruma bağlıdır ve işlemin önceki durumlarından veya değerlerinden bağımsızdır.

<span class="mw-page-title-main">Rastgele yürüyüş</span>

Rastgele yürüyüş (ya da rassal yürüyüş) matematiksel bir nesne olup, bir stokastik veya rastgele süreç olarak bilinir. Bu süreç, herhangi bir matematiksel uzayda –örneğin tamsayılar uzayı–atılan rastgele adımların toplamından oluşan patikayı tanımlamaya yöneliktir. Örneğin, bir molekülün sıvı veya gaz içerisinde izlediği yol, hayvanların yem arayışında takip ettiği patika, değişkenlik gösteren hisse fiyatları ve de bir borsa oyuncusunun finansal durumu rastgele yürüyüş modelleri ile tahmin edilebilir; ancak gerçekte tamamen rastlantısal olmama ihtimalleri de vardır. Bu örneklerin de gösterdiği gibi, rastgele yürüyüş modelinin birçok bilim dalında uygulama alanı mevcuttur; ekoloji, psikoloji, bilgisayar bilimleri, fizik, kimya, biyoloji ve ekonomi bunlara örnektir.

<span class="mw-page-title-main">Matematiksel istatistik</span> matematiksel yöntemlerin kullanıldığı olası istatistikler

Matematiksel istatistik, istatistiksel veri toplama tekniklerinin aksine, matematiğin bir dalı olan olasılık teorisinin istatistiğe uygulanmasıdır. Bunun için kullanılan özel matematiksel teknikler arasında matematiksel analiz, doğrusal cebir, stokastik analiz, diferansiyel denklemler ve ölçü teorisi bulunur.