İçeriğe atla

Büyük sayılar yasası

Tek bir Şablon:Zar'ın birçok kez atılarak Büyük Sayılar Yasası'a uyan bir sonuç vermesine dair bir örnek. Zar atış sayısı arttıkça, tüm sonuçların değerlerinin ortalaması 3,5'e yaklaşır. Görselde dikey eksen ortalama değeri, yatay eksen ise deneme sayısını vermektedir. Yeşil çizgi beklenen 3,5 değerine karşılık gelirken, kırmızı çizgi ise zar atışlarının ortalama sonuçlarını deneme sayısının çizdirilmesiyle elde edilmiştir.

Büyük Sayılar Kanunu ya da Büyük Sayılar Yasası, bir rassal değişkenin uzun vadeli kararlılığını tanımlayan bir olasılık teoremidir. Sonlu bir beklenen değere sahip birbirinden bağımsız ve eşit dağılıma sahip bir rassal değişkenler örneklemi verildiğinde, bu gözlemlerin ortalaması sonuçta bu beklenen değere yakınsayacak ve bu değere yakın bir seyir izleyecektir.

Büyük Sayılar Kanunu bir zarın peş peşe atılması ile örneklenebilir. Öyle ki, multinom dağılımı sonucunda 1, 2, 3, 4, 5 ve 6 sayılarının gelme olasılığı eşittir. Bu sonuçların aritmetik ortalaması (ya da "beklenen değeri"),

(1+2+3+4+5+6)/6=3,5 olur.

Sağdaki grafik bir zarın atılması deneyinin sonuçlarını göstermektedir. Bu deneyde görürüz ki, ilk başta zar atışlarının ortalaması fazlaca dalgalanmaktadır. Büyük sayılar yasası tarafından öngörüldüğü üzere, gözlem sayısı arttıkça, ortalama, beklenen değerin yani 3,5'in etrafında dengelenmektedir.

Bir başka örnek madeni para atılması olabilir. Bir madeni paranın peş peşe atılması durumunda, yazıların (ya da turaların) sıklığı, gözlem sayısı arttıkça, %50'ye gittikçe yaklaşacaktır. Fakat yazı ve tura sayıları arasındaki mutlak fark, atış sayısı arttıkça açılacaktır.[1] Örneğin, 1000 atıştan sonra 520 ve 10000 atıştan sonra 5096 yazı görebiliriz. Ortalama,%52'den %50,96'ya gittiği, gerçek %50'ye yaklaştığı halde, ortalamadan toplam fark 40'tan 192'ye yükselmiştir.

Büyük Sayılar Kanunu büyük bir önem taşır, çünkü rastgele olaylardan kararlı uzun-vadeli sonuçlar alınacağını "garanti eder". Örneğin, bir gazino tek bir Amerikan Rulet dönüşünden para kaybedebilir, ama 1000'lerce dönüşe oynanan paranın tamamının %5,3'üne yakınını neredeyse kesin olarak kazanacaktır. Bir oyuncunun herhangi bir kazancı, sonuçta oyunun başlıca parametreleri tarafından soğurulacaktır. Büyük sayılar yasasının büyük sayıda gözlem yapıldığı zaman etkili olacağı unutulmamalıdır. Küçük miktardaki gözlem için sonucun beklenen değere yaklaşacağını veya bir sapmanın hemen bir başkasıyla "dengeleneceğini" beklemek için bir neden yoktur ki bu duruma Monte Carlo Yanılgısı ya da kumarbaz aldanması denir.

Geçmiş

Büyük Sayılar Kanunu ilk olarak Jacob Bernoulli tarafından tanımlanmıştır.[2] 1713'te Ars Conjectandi (Varsayımın Sanatı) adlı eserinde yayınlanan yeterli derecede titiz bir kanıtı geliştirebilmesi 20 yılına mâl olmuştur.Jacob Bernoulli, bu bulguyu "Altın Teoremi" olarak adlandırmış, fakat sonradan yaygın olarak "Bernoulli'nin Kuramı" olarak kullanılmıştır (Bernoulli Kuramı fizik kuramıyla karıştırılmaması gerekir). 1835'te S.D. Poisson, bu yasayı "La Loi Des Grands Nombres" (Büyük sayılar yasası) olarak adlandırmıştır.[3] İki isimde de anılan bu yasa için "Büyük sayılar yasası" terimi daha sık kullanılmaktadır.

Bernoulli ve Poisson kendi çalışmalarını yayımladıktan sonra, Chebyshev, Markov, Borel, Cantelli ve Kolmogorov'un da aralarında yer aldığı diğer matematikçiler de yasanın gelişmesine katkıda bulunmuşlardır. Bu çalışmalar yasanın iki belirgin biçiminin ortaya konulmasında etkili olmuştur. Bu biçimlerden biri "zayıf" yasa, diğeri de "güçlü" yasa olarak adlandırılır. Bu biçimler farklı yasaları tanımlamamaktadır, sadece ölçülmüş olasılığın, gerçek olasılığa yakınsamasını tanımlamanın farklı yollarıdır ve büyük olan küçüğü içerir.

İspatı

X1, X2, ... şeklinde, E(X1) = E(X2) = ... = µ < ∞ biçiminde ifade edilebilecek sonlu bir beklenen değere sahip, sonsuz sayıda i.i.d. (bağımsız ve özdeş dağılmış rastgele değişken) rastgele değişken serisi verildiğinde, örneklemin ortalamasının yakınsadığı değeri arıyoruz:

Büyük sayılar yasası - Zayıf yasa

Teorem:

Chebyshev'in eşitsizliğini kullanarak kanıtı

Bu kanıt veryansın sonlu olduğu varsayımına dayanır: (tüm değerleri için). Rastgele değişkenlerin bağımsız olması, aralarında herhangi bir korelasyon olmadığını belirtir ve ayrıca

Serinin genel ortalaması μ, örneklemin ortalamasıdır:

Chebyshev'in eşitsizliğini üzerinde kullanarak

elde edilebilir. Bu, aşağıdakini elde etmek için kullanılabilir:

n sonsuza gittikçe, ifadenin değeri 1'e yaklaşır. Olasılıktaki yakınsama tanımı (bkz. Rastgele değişkenlerin yakınsaması) gereği,

sonucu elde edilir.

Karakteristik fonksiyonların yakınsamasını kullanarak kanıtı

Karmaşık fonksiyonlardaki Taylor'un teoremi gereğince herhangi bir rastgele değişkenin karakteristik fonksiyonu, X, μ sonlu ortalamasıyla, aşağıdaki şekilde yazılabilir:

Tüm X1, X2, ... değişkenleri aynı karakteristik fonksiyona sahiptir, böylece bunu φX ile belirtebiliriz.

Karakteristik fonksiyonların basit özelliklerini kullanarak

Bu kurallar, 'in φX: cinsinden karakteristik fonksiyonunu hesaplamak için kullanılabilir:

Limit eitμ, sabit rastgele değişken μ'nün karakteristik fonksiyonudur ve Lévy süreklilik teoremi gereğince, dağılımda μ değerine yakınsar:

μ, dağılımdaki μ'ye yakınsamanın ve olasılıktaki μ'ye yakınsamanın eşit olduğunu ifade eden bir sabittir. (Bkz. Rastgele değişkenlerin yakınsaması) Bu da şu anlama gelir:

Bu kanıt gerçekte şu anlama gelmektedir ki, olasılıkta örneklem ortalaması, var olduğu sürece, merkezdeki karakteristik fonksiyonun türevine yakınsar.

Biçimler

Yasanın her iki ifadesi de örneklem ortalamasının

beklenen değere yakınsadığını

ifade eder. Burada X1, X2, ... değerleri E(X1)=E(X2) = ... = µ < ∞ beklenen değerlerine sahip, bağımsız ve eş aralıklı (i.i.d.) sonsuz rassal değişken sırasını simgeler.

Bir sonlu varyans Var(X1) = Var(X2) = ... = σ2 < ∞ varsayımına ihtiyaç yoktur. Büyük veya sonsuz varyans yakınsamayı daha yavaş kılacaktır, fakat büyük sayılar yasası hala geçerlidir. Kanıtları daha kolay ve kısa tutmak için bu varsayım genellikle yapılır.

Güçlü ve zayıf ifadeler arasındaki fark, hangi tür yakınsamadan bahsettiğimizdir.

Zayıf Yasa

Büyük sayıların zayıf yasası belirtmektedir ki, örneklem ortalamasının olasılıkta yakınsaması beklenen değere doğru gerçekleşir

Bu, herhangi bir pozitif ε sayısı için

(Kanıt)

Olasılıkta yakınsamayı yorumlamak isteyecek olursak, zayıf yasa der ki, birçok gözlemin ortalaması giderek ne kadar küçük olduğuna bakılmaksızın, verilen herhangi bir sıfırdan farklı sınır dahilinde olmak üzere, ortalamaya yakın olacaktır.

Bu ifadeye zayıf yasa denir, çünkü olasılıkta yakınsama, rassal değişkenlerin zayıf yakınsamasıdır.

Zayıf büyük sayılar yasasının bir sonucu asimptotik eşdağılım özelliğidir.

Güçlü Yasa

Büyük sayıların güçlü yasası der ki, örneklem ortalamasının olasılıkta yakınsaması neredeyse kesin olarak beklenen değere doğru gerçekleşir.

Bu demektir ki,

Kanıt, zayıf yasadan daha karmaşıktır. Bu yasa bir rassal değişkenin beklenen değerini "art arda örneklemin uzun-vadeli ortalaması" olan sezgisel yorumunu doğrular.

Bu ifade güçlü yasa olarak adlandırılmıştır, çünkü yakınsama, rassal değişkenlerin güçlü yakınsamasıdır. Güçlü yasa, zayıfı kapsar.

Büyük sayıların güçlü yasası, ergodik teorem'in özel durumu olarak görülebilir.

Etkinlikler ve gösteriler

Kuramı ve büyük sayılar yasasının uygulamalarını interaktif araçlarla görselleştiren çeşitli uygulamalar mevcuttur. SOCR adlı hands-on learning activity15 Mart 2020 tarihinde Wayback Machine sitesinde arşivlendi. kaynak ile beraber Java applet (select the Coin Toss LLN Experiment)28 Aralık 2014 tarihinde Wayback Machine sitesinde arşivlendi. sitesinde yer alan örnekler büyük sayılar yasasını güzel bir şekilde ifade eder.

Ayrıca bakınız

  • Merkezi limit teoremi

Kaynakça

  1. ^ Tijms, Henk (2007). Understanding Probability: Chance Rules in Everyday Life. Cambridge University Press. s. 17. ISBN 978-0-521-70172-3. 
  2. ^ Jakob Bernoulli, Ars Conjectandi: Usum & Applicationem Praecedentis Doctrinae in Civilibus, Moralibus & Oeconomicis, 1713, Chapter 4,(Translated into English by Oscar Sheynin)
  3. ^ Hacking, Ian. (1983) "19th-century Cracks in the Concept of Determinism"
  • Grimmett, G. R.; Stirzaker, D. R. (1992). Probability and Random Processes, 2nd Edition. Clarendon Press, Oxford. ISBN 0-19-853665-8. 
  • Durrett, Richard (1995). Probability: Theory and Examples, 2nd Edition. Duxbury Press. 
  • Jacobsen, Martin (1992). Videregående Sandsynlighedsregning (Advanced Probability Theory) 3rd Edition. HCØ-tryk, Copenhagen. ISBN 87-91180-71-6. 

Dış bağlantılar

  • [1] 4 Eylül 2021 tarihinde Wayback Machine sitesinde arşivlendi. MathWorld: Zayıf büyük sayılar yasası.
  • [2] 23 Eylül 2008 tarihinde Wayback Machine sitesinde arşivlendi. MathWorld: Güçlü büyük sayılar yasası.
  • [3] Şans tabloları yasası - rastgele şansa bağlanabilenden daha büyük olduğu iddia edilen başarıların sınanması için kullanılır.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Student'in t dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında t-dağılımı ya da Student'in t dağılımı genel olarak örneklem sayısı veya sayıları küçük ise ve anakütle normal dağılım gösterdiği varsayılırsa çıkartımsal istatistik uygulaması için çok kullanılan bir sürekli olasılık dağılımıdır. Çok popüler olarak tek bir anakütle ortalaması için güven aralığı veya hipotez sınaması ve iki anakütle ortalamasının arasındaki fark için güven aralığı veya hipotez sınamasında, yani çıkarımsal istatistik analizlerde, uygulama görmektedir.

Olasılık kuramı ve istatistik bilim dallarında varyans bir rassal değişken, bir olasılık dağılımı veya örneklem için istatistiksel yayılımın, mümkün bütün değerlerin beklenen değer veya ortalamadan uzaklıklarının karelerinin ortalaması şeklinde bulunan bir ölçüdür. Ortalama bir dağılımın merkezsel konum noktasını bulmaya çalışırken, varyans değerlerin ne ölçekte veya ne derecede yaygın olduklarını tanımlamayı hedef alır. Varyans için ölçülme birimi orijinal değişkenin biriminin karesidir. Varyansın karekökü standart sapma olarak adlandırılır; bunun ölçme birimi orijinal değişkenle aynı birimde olur ve bu nedenle daha kolayca yorumlanabilir.

<span class="mw-page-title-main">Kovaryans</span>

Olasılık teorisi ve istatistikte, kovaryans iki değişkenin birlikte ne kadar değiştiklerinin ölçüsüdür. Kovaryans, iki rastgele değişkenin beraber değişimlerini inceleyen bir istatistiktir. İki değişkenin birbirine benzer (eş) işlevli olması kovaryant; iki değişkenin birbirine zıt işlevli olması kontravaryant olarak ifade edilir.

<span class="mw-page-title-main">Totient</span>

Totient sayılar teorisinde, bir tam sayının o sayıdan daha küçük ve o sayı ile aralarında asal olan sayma sayı sayısını belirten fonksiyondur. Genellikle Euler Totient ya da Euler'in Totienti olarak adlandırılan Totient, İsviçreli matematikçi Leonhard Euler tarafından yaratılmıştır. Totient fonksiyonu, Yunan harflerinden ile simgelendiği için Fi fonksiyonu olarak da anılabilir.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

Matematikte karmaşık sayı, bir gerçel bir de sanal kısımdan oluşan bir nesnedir. a ve b sayıları gerçek olursa karmaşık sayılar şu biçimde gösterilirler:

<span class="mw-page-title-main">Standart sapma</span> İstatistikte bir varyasyon ölçüsü

Standart sapma, Olasılık kuramı ve istatistik bilim dallarında, bir anakütle, bir örneklem, bir olasılık dağılımı veya bir rassal değişken, veri değerlerinin yayılımının özetlenmesi için kullanılan bir ölçüdür. Matematik notasyonunda genel olarak, bir anakütle veya bir rassal değişken veya bir olasılık dağılımı için standart sapma σ ile ifade edilir; örneklem verileri için standart sapma için ise s veya s'

Merkezi limit teoremi büyük bir sayıda olan bağımsız ve aynı dağılım gösteren rassal değişkenlerin aritmetik ortalamasının, yaklaşık olarak normal dağılım göstereceğini ifade eden bir teoremdir. Matematiksel bir ifadeyle, bir merkezi limit teoremi olasılık kuramı içinde bulunan bir zayıf yakınsama sonucu setidir. Bunların hepsi, birçok bağımsız aynı dağılım gösteren rassal değişkenlerin herhangi bir toplam değerinin limitte belirli bir "çekim gücü gösteren dağılıma" göre dağılım gösterme eğiliminde olduğu gerçeğini önerir.

Bernoulli dağılımı olasılık kuramı ve istatistik bilim dallarında, p olasılıkla başarı ile 1 değeri alan ve olasılıkla başarısızlık ile 0 değeri alan bir ayrık olasılık dağılımıdır. İsmi ilk açıklamayı yapan İsviçreli bilim insanı Jakob Bernoulli anısına verilmiştir.

<span class="mw-page-title-main">Geometrik dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında geometrik dağılım şu iki şekilde ifade edilebilen ayrık olasılık dağılımıdır:

<span class="mw-page-title-main">Zeta dağılımı</span>

Olasılık kuramı ve istatistik bilim kollarında, zeta dağılımı bir ayrık olasılık dağılımıdır. Eğer X s parametresi ile zeta dağılımı gösteren bir bir rassal değişken ise, Xin k tam sayısı değerini almasının olasılığı şu olasılık kütle fonksiyonu ile belirtilir:

<span class="mw-page-title-main">Üstel dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında üstel dağılımı bir sürekli olasılık dağılımları grubudur. Sabit ortalama değişme haddinde ortaya çıkan bağımsız olaylar arasındaki zaman aralığını modelleştirirken bir üstel dağılım doğal olarak ortaya çıkar.

<span class="mw-page-title-main">Tekdüze dağılım (sürekli)</span> Özel olasılık dağılımı

Sürekli tekdüze dağılım (İngilizce: continuous uniform distribution) olasılık kuramı ve istatistik bilim dallarında, her elemanı, olasılığın desteklendiği aynı büyüklükteki aralık içinde bulunabilir, her sürekli değer için aynı sabit olasılık gösteren bir olasılık dağılımları ailesidir. Desteklenen aralık iki parametre ile, yani minimum değer a ve maksimum değer b ile, tanımlanmaktadır. Bu dağılım kısa olarak U(a,b) olarak anılır.

Olasılık teorisi ya da ihtimaliyet teorisi rastgele olayların analizi ile ilgilenen bir matematik bilim dalıdır. Olasılık teorisinin ana ögeleri rassal değişkenler, saf rassal süreçler, olaylar olarak sayılabilir. Bunlar ya tek olarak ortaya çıkan veya bir zaman dönemi içinde gelişerek meydana gelen, ilk görünüşü rastgele bir şekilde olan deterministik olmayan olayların veya ölçülebilir miktarların matematiksel soyutlamalarıdır. Bir madeni parayı yazı-tura denemesi için havaya atmak veya bir zarı atmak ile ortaya çıkan sonuç ilk bakışta rastgele bir olay olarak görülebilirse bile eğer birbirini takip eden rastgele olaylar tekrar tekrar ortaya çıkartılırsa incelenebilecek ve tahmin edilebilecek belirli bir istatistiksel seyir takip ettikleri görülecektir. Bu türlü olaylar ve sonuçların seyirlerini betimleyen iki temsilci matematiksel sonuç büyük sayılar yasası ve merkezsel limit teoremidir.

Olasılık kuramı içinde herhangi bir rassal değişken için karakteristik fonksiyon, bu değişkenin olasılık dağılımını tüm olarak tanımlar. Herhangi bir rassal değişken X için, gerçel doğru üzerinde, bu fonksiyonu tanımlayan formül şöyle yazılır:

<span class="mw-page-title-main">Cauchy dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında Cauchy-Lorentz dağılımı bir sürekli olasılık dağılımı olup, bu dağılımı ilk ortaya atan Augustin Cauchy ve Hendrik Lorentz anısına adlandırılmıştır. Matematik istatistikçiler genel olarak Cauchy dağılımı adını tercih edip kullanmaktadırlar ama fizikçiler arasında Lorentz dağılımı veya Lorentz(yen) fonksiyon veya Breit-Wigner dağılımı olarak bilinip kullanılmaktadır.

Matematik bilimi içinde moment kavramı fizik bilimi için ortaya çıkartılmış olan moment kavramından geliştirilmiştir. Bir bir reel değişkenin reel-değerli fonksiyon olan f(x)in c değeri etrafında ninci momenti şöyle ifade edilir:

Olasılık kuramı bilim dalında matematiksel beklenti veya beklenen değer veya ortalama birçok defa tekrarlanan ve her tekrarda mümkün tüm olasılıklarını değiştirmeyen rastgele deneyler sonuçlarından beklenen ortalama değeri temsil eder. Bir ayrık rassal değişkennin alabileceği bütün sonuç değerlerin olasılıklarıyla çarpılması ve bu işlemin bütün değerler üzerinden toplanmasıyla elde edilen değerdir. Bir sürekli rassal değişken için rassal değişken ile olasılık yoğunluk fonksiyonunun çarpımının aralığı belirsiz integralidir. Fakat dikkat edilmelidir ki bu değerin genel pratik anlamla rasyonel olarak beklenmesi pek uygun olmayabilir, çünkü matematiksel beklentiin olasılığı çok düşük belki sıfıra çok yakın olabilir ve hatta pratikte matematiksel beklenti bulunmaz. Ağırlıklı ortalama olarak da düşünülebilir ki değerler ağırlık katsayıları verilen olasılık kütle fonksiyonu veya olasılık yoğunluk fonksiyonudur.

Güven aralığı, istatistik biliminde bir anakütle parametresi için bir çeşit aralık kestirimi olup bir çıkarımsal istatistik çözüm aracıdır. Bir anakütle parametre değerinin tek bir sayı ile kestirimi yapılacağına, bu parametre değerini kapsayabilecek iki sayıdan oluşan bir aralık bulunur. Böylece güven aralıkları bir kestirimin ne kadar güvenilir olduğunu gösterir.

Paramanyetik bir malzemede, malzemenin mıknatıslanması genel olarak uygulanan manyetik alanla orantılıdır. Fakat eğer malzeme ısıtılırsa, bu oran düşer: Belirli bir sıcaklığa kadar, mıknatıslanma sıcaklıkla ters orantılıdır. Bu kavram “Curie Yasası” tarafından kapsanmaktadır: