İçeriğe atla

Bölme kuralı

Bölme kuralı, yüksek matematikte diğer iki işlevin bölümü şeklinde olan bir işlev in türevinin hesaplanmasında kullanılır.

İspat

Çarpma kuralı kullanılarak aynı ifade yeniden yazılıp çözüme geçilirse,

ispatı yapılır. Burada dikkat edilmesi gereken bir husus türevi hesaplanırken zincir kuralı kullanılmış olduğudur.

Örnekler

ifadesinin türevi:

Yukardaki örnekte

olarak seçmiştik. Benzer bir şekilde (x ≠ 0 iken) sin(x)/x2 ifadesinin türevi aynı yöntemi kullanarak:

olarak bulunur.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

<span class="mw-page-title-main">Türev alma kuralları</span> Vikimedya liste maddesi

Türev, matematikteki ve özellikle diferansiyeldeki temel kavramlardan biridir. Aşağıda temel türev alma kuralları ve bazı fonksiyonların türev kuralları yer almaktadır.

<span class="mw-page-title-main">Zincir kuralı</span>

Zincir kuralı bir değişkene bağlı bir fonksiyonun değişkeninin başka bir değişkene bağlı olması durumunda türevinin:

Çarpma kuralı iki veya daha fazla fonksiyonun çarpımının türevinin hesaplanmasında kullanılan bir yöntemdir. Kuralı Gottfried Leibniz türettiği için bu kural Leibniz kuralı olarak da geçer. Kuralın matematiksel ifadesi f ve g sırasıyla f(x) ve g(x) ifadelerinin kapalı formu olmak üzere şöyle verilir:

Aşağıdaki liste trigonometrik fonksiyonların integrallerini içermektedir. İntegral fonksiyonlarının tüm bir listesi için lütfen İntegral tablosu sayfasına bakınız.

Matematikte de Moivre formülü, 18. yüzyıl Fransız matematikçisi Abraham de Moivre anısına isimlendirilmiş ve herhangi bir karmaşık sayı için şu ifadenin geçerli olduğunu önerir:

<span class="mw-page-title-main">Fourier serisi</span>

Matematikte, Fourier serileri bir periyodik fonksiyonu basit dalgalı fonksiyonların toplamına çevirir.

Gauss integrali, Euler–Poisson integrali olarak da bilinir, tüm reel sayılardaki ex2 Gauss fonksiyonunun integralidir. Alman matematik ve fizikçi Carl Friedrich Gauss'dan sonra adlandırlıdı. İntegrali şöyledir:

Periyodik fonksiyon, matematikte belli zaman aralığıyla kendini tekrar eden olguları ifade eden fonksiyonlara verilen isimdir. Tekrar etme süresi "periyot" olarak bilinir. Trigonometrik fonksiyonlar en tipik periyodik fonksiyonlardır. Bununla birlikte, diğer periyodik fonksiyonlar da trigonometrik fonksiyonların toplamı olarak ifade edilebilirler.

<span class="mw-page-title-main">Beta fonksiyonu</span>

Matematik'te, beta fonksiyonu, Euler integrali'nin ilk türüdür,

<span class="mw-page-title-main">Hiperbolik fonksiyon</span>

Matematikte, hiperbolik fonksiyonlar sıradan trigonometrik fonksiyonların analogudur. Temel hiperbolik fonksiyonlar hiperbolik sinüs "sinh", hiperbolik kosinüs "cosh", bunlardan türetilen hiperbolik tanjant "tanh" ve benzer fonksiyonlardır. Ters hiperbolik fonksiyonlar alan hiperbolik sinüsü "arsinh" ve benzeri fonksiyonlardır.

Burada, en yaygın olarak kullanılan koordinat dönüşümü bazılarının bir listesi verilmiştir. Kısmi türevler alınırken çarpımın türevi gibi davranıldığı akıldan çıkarılmamalıdır. Bir örnek olarak fonksiyonunda üç çarpım vardır

<span class="mw-page-title-main">Üçgen dalga</span>

Üçgen dalga, ismini üçgen şeklinden alan bir sinüzoidal olmayan dalga şeklidir. Üçgen dalga periyodik, parçalı lineer, sürekli gerçel bir fonksiyondur.

Değişken değiştirme, İntegral, çarpanlara ayırma, denklemler, üslü denklemler, trigonometri ve diferansiyel denklemler başta olmak üzere matematiğin her alanında işlemi basitleştirmek için kullanılan matematiksel bir yöntemdir.

Matematikte ters trigonometrik fonksiyonlar, tanım kümesinde bulunan trigonometrik fonksiyonların ters fonksiyonudur.

<span class="mw-page-title-main">Gauss fonksiyonu</span>

Matematikte Gauss fonksiyonu, bir fonksiyon biçimidir ve şöyle ifade edilir:

<span class="mw-page-title-main">Parametrik denklem</span>

Matematikte, bir parametrik denklem, bir grup niceliği parametreler olarak adlandırılan bir veya daha fazla bağımsız değişkenin fonksiyonları olarak tanımlar. Parametrik denklemler genellikle bir eğri veya yüzey gibi geometrik bir nesneyi oluşturan noktaların koordinatlarını ifade etmek için kullanılır ve sırasıyla parametrik eğri ve parametrik yüzey olarak adlandırılır. Bu gibi durumlarda, denklemler, toplu olarak nesnenin parametrik temsili veya parametrik sistem, veya parametrelendirilmesi olarak adlandırılır.

Trigonometride, trigonometrik özdeşlikler trigonometrik fonksiyonları içeren ve eşitliğin her iki tarafının da tanımlandığı değişkenlerin her değeri için doğru olan eşitliklerdir. Geometrik olarak, bunlar bir veya daha fazla açının belirli fonksiyonlarını içeren özdeşliklerdir. Bunlar üçgen özdeşliklerinden farklıdır, bunlar potansiyel olarak açıları içeren ama aynı zamanda kenar uzunluklarını veya bir üçgenin diğer uzunluklarını da içeren özdeşliklerdir.

<span class="mw-page-title-main">Trigonometrik yerine koyma</span> trigonometrik fonksiyonları içeren integrallerin hesaplanması için yöntem

Matematikte, bir trigonometrik yerine koyma veya trigonometrik ikame, trigonometrik fonksiyon yerine başka bir ifadeyi koyar. Kalkülüste trigonometrik ikameler integralleri hesaplamak için kullanılan bir tekniktir. Bu durumda, radikal fonksiyon içeren bir ifade trigonometrik bir ifade ile değiştirilir. Trigonometrik özdeşlikler cevabı basitleştirmeye yardımcı olabilir. Diğer yerine koyma yoluyla integrasyon yöntemlerinde olduğu gibi, belirli bir integrali değerlendirirken, integrasyon sınırlarını uygulamadan önce, ters türevin sonucunu tam olarak çıkarmak daha basit olabilir.

Trigonometrik fonksiyonların türevleri, trigonometrik bir fonksiyonun türevini yani bir değişkene göre değişim oranını bulmanın matematiksel sürecidir. Örneğin, sinüs fonksiyonunun türevi şeklinde yazılır, bu da sin(x) fonksiyonunun belirli bir açı x = a için değişim oranının o açının kosinüsü ile verildiği anlamına gelir.