İçeriğe atla

Bölüm topolojisi

Bölüm topolojisi, bir topolojik uzaydan başka bir topolojik uzay elde etmenin klasik yollarından biridir. Bir topolojik uzayda kimi noktaların birbirine yapıştırılmasıyla (özdeşleştirilmesiyle) elde edilen yeni kümenin üzerine konacak bölüm topolojisi, bu yeni kümeyi yeni bir topolojik uzaya dönüştürür. Bu yeni uzaya bölüm uzayı denir. Örneğin [0,1] kapalı aralığı bir topolojik uzaydır. Bu uzayda 0 ve 1 noktaları özdeşleştirilir ve bu yeni kümeye bölüm topolojisi verilirse oluşturulan topolojik uzay düzlemde birim çember olur. Başka bir örnek: düzlemde yatan birim yarıçaplı dairenin kenarının üst tarafındaki her bir nokta kenarın alt tarafında karşılık gelen noktaya yapıştırılır ve bu yeni kümenin üzerine bölüm topolojisi konursa, bu topolojik uzay 3 boyutlu Öklit uzayında birim yarıçaplı küre olur.

Bölüm uzayı, ilk baştaki uzaydan genelde farklıdır çünkü yapıştırma işlemi sürekli bir işlem değildir. İlk uzaydan son uzaya akla gelen ilk gönderim birebir bile değildir. Yine de özel durumlarda başlanan uzaya geri elde edilebilir. Bariz olmayan bir örnek için düzlemde birim çemberin her noktasını başnoktaya göre bakışık (simetrik) noktasıyla özdeşleştirip bölüm topolojisi koyalım. Çıkan topolojik uzay yine bir çemberdir. lde</math> X üzerinde bir denklik bağıntısı olsun.

Matematiksel Tanım

X herhangi bir topolojik uzay olsun. X üzerinde olarak gösterilen bir denklik bağıntısı alalım. X'in herhangi bir x öğesi için X'e ait şöyle bir altküme tanımlansın:

;

yani [x] kümesi, x 'e altında denk olan tüm öğelerin kümesi olsun. Bu altkümeye denklik sınıfı denir. Tüm denklik sınıflarının kümesineyse X'in altında bölüm kümesi denir ve olarak gösterilir:

.

Bölüm kümesinde şöyle tanımlanan topolojiye bölüm topolojisi denir: 'in bir altkümesinin açık olması ancak ve ancak bu altkümenin içindeki denklik sınıflarının X'te birleşiminin açık olması durumunda doğrudur. Bu özelliğin bir topoloji tanımladığı gösterilebilir. Bu topolojiye sahip bir bölüm kümesine bölüm uzayı denir.

Bu tanıma denk olduğu gösterilebilecek bir tanım da şudur: gönderimi x öğesini [x] denklik sınıfına götüren izdüşüm gönderimi olsun. Bölüm kümesinin üzerine konacak ve p gönderimini sürekli yapacak en ince topolojiye bölüm topolojisi denir.

Herhangi X topolojik uzayı ve Y kümesi için benzer tanımlar yapılabilir. örten bir gönderim olsun. Y kümesinin üzerine konacak ve f gönderimini sürekli yapacak en ince topolojiye bölüm topolojisi denir. Yukarıdaki gibi, buna denk bir tanım vardır: Y'de bir U altkümesinin açık olması ancak ve ancak alt kümesinin X'te açık olması durumunda doğrudur. Bu durumda f gönderimine de bölüm gönderimi denir. Burada derken X'in f altında U'ya giden öğelerinin kümesini kastediyoruz.

Öte yandan, f gönderimi X üzerinde bir denklik bağıntısı tarif eder: ancak ve ancak f(x)=f(y). Bu denklik bağıntısının belirlediği bölüm uzayı, yukarıdaki gibi kurulan Y topolojik uzayına homeomorfiktir.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Topoloji</span>

Topoloji, matematiğin ana dallarından biridir. Yunancada yer, yüzey veya uzay anlamına gelen topos ve bilim anlamına gelen logos sözcüklerinden türetilmiştir. Topoloji biliminin kuruluş aşamalarında yani 19. yüzyılın ortalarında, bu sözcük yerine aynı dalı ifade eden Latince analysis situs ür.

Topolojik uzaylar, matematiğin Topoloji dalının başlıca uğraş konularıdır. Bir X kümesi ve bu kümenin alt kümelerinin bir kısmını içeren ve aşağıdaki varsayımları sağlayan S kümesinden oluşurlar:

<span class="mw-page-title-main">Homeomorfizma</span>

Homeomorfizma veya topolojik eşyapı , matematiksel alanda topolojinin incelediği temel konulardan biridir ve iki uzayın parça koparmadan sürekli olarak birbirine dönüşümünü inceler. Kelime Yunanca homoios "benzer" ve morphē "şekil-şeklini bozmak" kelimelerinden türemiştir. Bu benzeşimler birçok değişken altyapı işlevleri ile açıklanabilir.

Yüzey, matematikte ve özellikle topolojide iki boyutlu çokkatlı. İki gerçel değişkenli ve gerçel değerli bir fonksiyonun üç boyutlu uzayda (R³) grafiği tipik yüzey örneğidir. Ayrıca Dünya yüzeyi, bir yumurtanın kabuğu, bir simit birer yüzeydir.

<span class="mw-page-title-main">Çok katlı</span>

Çok katlı, topolojide soyut topolojik bir uzay. Bu uzayın her noktasının çevresi Öklit uzayına benzer. Bununla birlikte, çok katlı bir Öklit uzayı olmak zorunda değildir. Genel yapısı, bu basit yerel yapısından çok daha karmaşık olabilir. Çok katlının boyutu, yerel olarak benzediği Öklit uzayının boyutu olarak tanımlanır. Herhangi bir topolojik uzay içinse boyut kavramından söz etmek genelde olası değildir.

<span class="mw-page-title-main">Simit (geometri)</span>

Topolojide ve geometride simit (torus) bir yüzeydir. Üç boyutlu uzayda bir çemberin, aynı düzlemde yatan ve çembere değmeyen bir doğru etrafında döndürülmesiyle elde edilir. Yiyecek simidin ya da yüzmek için kullanılan şişirilmiş iç lastiğin yüzeyi matematiksel olarak birer simittir.

Bağıntıda yansıma, simetri ve geçişme özelliği varsa bu bağıntı denklik bağıntısıdır.

<span class="mw-page-title-main">Açıkorur gönderim</span>

Matematikte açıkorur gönderim ya da açıkorur dönüşüm tanımlı olduğu kümenin her noktasında yerel olarak açıları koruyan bir fonksiyona verilen addır. Bu tanımı haliyle, açıkorur gönderimlerin her zaman uzunlukları koruması ya da yönleri koruması beklenmez.

Topolojide, geometrik bir nesne veya uzaya yol bağlantılıysa ve iki nokta arasındaki her yol sürekli bir şekilde bir diğerine dönüştürülebiliyorsa basit bağlantılı adı verilir.

Topolojide derece, aynı boyutlu topolojik çokkatlılar arasındaki sürekli gönderimler için tanımlıdır. Çokkatlılar pürüzsüzse ve aradaki gönderim de pürüzsüzse gönderimin derecesi, olağan değerlerinin ters görüntüsündeki nokta sayısıyla ilişkilidir.

Topolojide tıkız-açık topoloji, bir topolojik uzaydan bir diğerine tüm sürekli gönderimlerin oluşturduğu küme üzerine konan bir topolojidir. Fonksiyonel analizde fonksiyon uzaylarına konan doğal bir topolojidir.

Pürüzsüz (gıcır) çokkatlı, türevli topolojide bir çeşit topolojik çokkatlı. Tanımı sayesinde, üzerinde türev alınabilir bir uzaydır. Örneğin türev ve integralin ilk tanımlandığı gerçel sayılar kümesi, 1 boyutlu pürüzsüz bir çokkatlıdır.

Topolojide altuzay topolojisi ya da tetiklenmiş topoloji, topolojik bir uzay içinde bir altkümeye konulabilecek en doğal topolojidir. Bu topoloji verilmiş altkümeyeyse (topolojik) altuzay denir.

Cebirsel geometri, matematiğin bir dalıdır. Adından anlaşılabileceği gibi, soyut cebirin, özellikle değişmeli cebirin yöntemleri ile geometrinin dili ve problemlerini bir araya getirir. Çağdaş matematik içerisinde merkezi bir rol üstlenmesinin yanında, karmaşık analiz, topoloji, sayılar kuramı gibi matematiğin diğer dallarıyla yakın ilişkisi vardır.

Matematikte deste, bir topolojik uzayın açık altkümelerine ilişkin yerel tanımlı verilerin sistematik olarak incelenmesini sağlayan bir araçtır.

<span class="mw-page-title-main">Cebirsel topoloji</span>

Cebirsel topoloji, topolojik uzayları cebirsel gereç ve yöntemlerle inceleyen matematik dalı. Matematikte bir kümenin üzerine döşenecek yapı, yönelinen matematik dalını belirler. Bir kümeye bir ya da birkaç işlem konarak sayılar kuramı ya da cebir yapmaya başlanabilir. Kümenin üzerine bir topoloji koyaraksa topoloji ve, ayrıca uzunluk koyarsak, geometri yapmaya başlanır. Üzerine topoloji konmuş bir uzayı incelemek için kimi cebirsel, aritmetik veya topolojik değişmezler tanımlanır; bunlar aracılığıyla topolojik uzayın özellikleri ayırdedilir. Örneğin tıkızlık, bağlantılılık, sayılabilirlik bu tür değişmezlerdir. Topolojik eşyapısal iki uzaydan biri bu değişmeze sahipse diğeri de buna sahip olmalıdır. Yani, eğer iki uzay için ayrı ayrı bakılan bir değişmez aynı değilse, bu iki uzay eşyapısal olmayacaktır. Yukarıda anılan en eski değişmezlerin hemen ardından inşa edilen klasik değişmezler cebirsel olanlardır.

Ayrılma belitleri bir topolojik uzayın üzerine konan ve noktaların ve altkümelerin birbirilerinden ne kadar ayrı olduğunu belirten belitler ailesi. Bir topolojik uzayın bu belitlerden birini sağladığı söylendiğinde, topolojisi hakkında global bir bilgi verilmiş ve topolojinin cinsi daraltılmış olur. Örneğin, topolojinin sahip olduğu açık kümelere bakmaksızın o topolojinin T0 olduğunu söylemek, topolojik uzayda seçilmiş herhangi iki noktanın birbirlerinden ayırt edilebilir olduğunu garanti eder.

Matematikte fonksiyon uzayı bir X kümesinden bir Y kümesine tanımlı fonksiyonların oluşturduğu kümeye verilen bir addır. Fonksiyonlar kümesi yerine fonksiyon uzayı denilmesinin nedeni matematiğin kendi içindeki uygulamalarında bu kümenin genellikle topolojik uzay veya vektör uzayı olarak ortaya çıkmasıdır.

Eşyapı ya da izomorfizma (ya da izomorfi), aynı kategoride(grupta) olan benzer iki matematiksel obje arasında bir gönderim olup matematiksel vücut tersi yapıda da muhafaza edilir. Aralarında bu şekilde eşyapı bulunan objelere eşyapısal ya da izomorf(ik) objeler denir. Örneğin iki küme arasında eşyapı, birebir, örten bir gönderimdir. Kümelerin üzerinde elemanlara sahip olma haricinde bir oluşum olmadığından, eşyapı gönderiminin koruyacağı başka bir yapı yoktur. Soyut cebirde iki grup arasında bir eşyapı, birebir, örten bir gönderimdir; dahası, iki gruptaki işleme saygı gösterir, bu iki işlemin birbirleriyle etkileşim halinde olmasını sağlar.

Homotopi, temel grup cebirsel topolojiden gelen ve topolojik uzayın neye benzediğini anlamak için kullanılan bir araçtır. Yani topolojik uzayın cebirsel bir tasvirini bize verir. Sezgisel olarak şöyle: X bir topolojik uzay ve x0, X'in bir elemanı olsun. x0 noktasında başlayıp X üzerinde kalarak x0 biten yolların hepsini düşünün. Bunlar topolojik uzay üzerinde bir eğri oluştururlar. Bu şekilde başlangıç ve bitiş noktası aynı olan yollara ilmek denir. Bazı ilmekler birbirine homotopik olarak denk, bazıları da değildir. Birbirine denk olan ilmekler arasında hiçbir fark görmememiz gerekmektedir. Oluşturulan bu küme π1(X,x0) şeklinde yazılır. Bu küme x0 noktasındaki başlayıp biten tüm yollardan oluşur ve birbirine homotopik olan ilmekler bu kümede aynı elemandır. Bu küme üzerinde şöyle bir işlem tanımlayalım: İki tane ilmeği alalım ve uç uca ekleyelim. π1(X,x0) kümesi bu işlemle bir grup yapısı oluşturur.