İçeriğe atla

Ağırlıklı ortalama

İstatistik bilim dalında ağırlıklı ortalama betimsel istatistik alanında, genellikle örneklem, veri dizisini özetlemek için bir merkezsel konum ölçüsüdür. En çok kullanan ağırlıklı ortalama tipi ağırlıklı aritmetik ortalamadır. Burada genel olarak bir örnekle bu kavram açıklanmaktadır. Değişik özel tipli ağırlıklar alan özel ağırlıklı aritmetik ortalamalar bulunmaktadır. Diğer ağırlıklı ortalamalar ağırlıklı geometrik ortalama ve ağırlıklı harmonik ortalamadir. Ağırlıklı ortalama kavramı ile ilişkili teorik açıklamalar son kısımda ele alınacakdır.

Ağırlıklı aritmetik ortalama

Ağırlıklı aritmetik ortalama

Boş-olmayan bir veri-seti olarak

ve her bir eleman icin ağırlık fonksiyonu

olarak verilirse, ağırlıklı aritmetik ortalama için formül şu olur:

Daha açık bir şekilde (toplama operatörü olan Σ kullanılmadan) bu formül

olur.

Ağırlıklar negatif olmamalıdır. Ağırlıkların bazıları sıfır olabilir; ancak hepsi sıfır olamazlar çünkü bu halde p matematikte sıfırla bölme tanımlanmaz.

Eğer bütün ağırlıklar birbirlerine eşitlerse sonuç aritmetik ortalamanın aynısıdır. Genel olarak ağırlıklı ortalamalar özellikleri bakimdan aritmetik ortalamaya benzemektedir. Ancak ağırlıklı ortalamalar bazen sezgiyle kabul edilemeyecek sonuçlar doğurur; örneğin Simpson'un paradoksu ortaya çıkabilir.

Ağırlıklı ortalamalar bazı matematik alanlarda rol oynarlar. Ayrıca betimsel istatistik alanında ağırlıklı ortalamalar pratikte kullanılır.

Normalize edilmiş ağırlıklı aritmetik ortalama

Pratikte çok görülebilen bir özel ağırlıklı aritmetik ortalama hali, ağırlık fonksiyonun normalize edilmiş şekli ile ortaya çıkan özel normalize ağırlıklı aritmetik ortalamadır. Normalizasyon işlemi ağırlıkların toplamını 1e eşit yapılması ile başarılır. Bu halde ağırlıklı aritmetik ortalama formülünün paydası 1e eşit olur. Böylece payda

olduğu için bu bir koşul olarak şu normalize edilmiş ağırlıklı aritmetik ortalama bulunur:

Uzunluk ağırlıklı aritmetik ortalama

Eğer x bir uzunluk değişkeni ise uzunluk ağırlıklı aritmetik ortalama şu olur:

Ağırlıklı aritmetik ortalama için pratik örneğin

Aynı bir istatistik imtihanı fakultede bulunan 30 öğrencili gündüz dersleri şubesine ve 20 öğrencili gece dersleri şubesine uygulanmıştır. Sonuç veri dizileri şöyledir:

Gündüz dersleri = 81, 82, 83, 84, 85, 86, 87, 87, 88, 88, 89, 89, 89, 90, 90, 90, 90, 91, 91, 91, 92, 92, 93, 93, 94, 95, 96, 97, 98, 99
Gece dersleri = 62, 67, 71, 74, 76, 77, 78, 79, 79, 80, 80, 81, 81, 82, 83, 84, 86, 89, 93, 98

Ağırlıksız aritmetik ortalama sonucu, gündüz dersleri şubesi için 90% ve gece dersleri şubesi için 80% olarak hesaplanır. Eğer bu ikisinin basit bir ortalaması alınırsa, bu ortalama 85% olarak bulunur. Bu tüm öğrenciler için bir basit aritmetik ortalama değildir. Çünkü aritmetik ortalama tüm notların toplanmasını ve bütün toplam öğrenci sayısı ile bölünmesini gerektirir; yani

Aynı sonuç daha kolay bir şekilde iki şube basit aritmetik ortalamalarını ve ağırlık olarak şube büyüklüklerini kullanarak bir ağırlıklı ortalama bulunması yoluyla da elde edilebilir:

Böylece, eğer bireysel notlar elde bulunmuyorsa fakat şube ortalama notları ve şube büyüklükleri biliniyorsa, tüm öğrenciler için ortalama not yine de hesaplanabilir.

Conveks kombinasyon

Incelenen sorunda sadece oransal olarak verilen ağırlıklar bulunuyorsa, herhangi bir ağırlıklı ortalamanın ağırlıklarının toplamı 1e eşit olan özel bir ağırlıklı ortalama olarak ifade edilebilir. Bu çeşit lineer toplama dönüşümüne bir konveks birleşim adı verilir.

Verilen sayısal örneğinde ağırlıkları oransal yüzde iken bu şöyle gosterilebilir:

Bu şöyle basitleştirilebilir:

Varyans ağırlıklı aritmetik ortalama

Eğer her bir veri elemanı nin her biri bilinen varyansli değişik olasılık dağılımından geldiği bilinmekte ise, bir özel bir ağırlıklı aritmetik ortalama kurulabilir. Bu tür ağırlıklı aritmetik ortalama için ağırlıklar bilinen varyans değerleri, yani

olarak seçilir. Eğer bu seçim yapılırsa, ortaya çıkan varyans ağırlıklı aritmetik ortalama şöyle ifade edililir:

Bu özel tip ağırlıklı ortalama için varyans şöyle hesaplanabilir:

Eğer her bir varyans sabit ise, yani ise, bu ifade daha da basit olarak şöyle yazılabilir:

.

Çıkarımsal istatistik alanı içinde bu tür varyans ağırlıklı aritmetik ortalamanın önemi, bu tür ortalamanın bağımsız ve aynı ortalama ile normal dağılım gösteren olasılık dağılımlarının ortalaması için maksimum olabilirlik kestirimi olduğundadır.

Ağırlıklı geometrik ortalama

Genellikle bir örneklem veri serisi şöyle verilirse

X = { x1, x2, ..., xn}

ve her bir veriye verilen ağırlıklar yani ağırlık fonksiyonu' şu ise:

W = { w1, w2, ..., wn}

Bu halde ağırlıklı geometrik ortalama şöyle hesaplanır:

Bundan çıkartılabilecek bir diğer sonuç, geoemetrik ortalamanın logaritmasının bireysel değerlerin logaritmalarının ağırlıklı aritmetik ortalaması olduklarıdır.

Ağırlıklı harmonik ortalama

Genellikle bir örneklem veri serisi şöyle verilsin:

X = { x1, x2, ..., xn}

Her bir veriye verilen ağırlıklar şunlar olsun:

W = { w1, w2, ..., wn}

Bu halde ağırlıklı harmonik ortalama şöyle hesaplanır:

Dikkat edilirse, eğer butun ağırlıklar aynı ağırlık sayısı ise, sonuç bir harmonik ortalamanın aynısıdır.

Genel ağırlıklı ortalama kavramı

Genel kavramsal yaklaşım

Bir ağırlıklı ortalama çoklu bir pozitif sayılar dizisini bir pozitif sayı olan

().

ifadesine tasarımlayan bir fonksiyondur.

  • Sabit nokta:
  • Homojenlik:
(Vektör notasyonu kullanarak: )
  • Monotonik fonksiyon:

Sonuç olarak:

  • Üst sınırlılık:
  • Devamlılık:
Bir isbat eskizi: ve olduğu için sonuç olarak

.

  • Türevi alınamayan ortalamalar bulunmaktadır. Örneğin, çok sayılı bir dizinin maksimum sayısı bir tür konum merkezi olduğu kabul edilebilir (ya bir güç ortalamasının uçsal hali olarak veya bir medyan olarak) ama bunun türevi alınamaz.
  • Hemen hemen her ortalama (genelleştirilmiş f-ortalama hariç) bu verilen özellikleri taşımaktadır.


    • Eğer kesinlikle monotonik ise, genelleştirilmiş f-ortalaması da monotoni özelliğini taşır.
    • Genelleştirilmiş f-ortalaması homojenlik özelliği göstermez.

Yukarıda verilen özellikler daha karmaşık ortalama tipleri yaratmak tekniklerinin bulunduğunu sezindirmektedir.

Eşit ağırlıklı ortalama

Eğer biraz aşırı detaycı bir görüş kabul edilirse, ağırlıksız ortalama kavramının gereksiz bulunduğu iddia edilebilir ve sadece genel olarak ağırlıklı ortalama kavramı belirlenmesi yeterlidir. Çünkü, hemen sezgi ile açıktır ki bir ağırlıksız ortalama ağırlıkları birbirine eşit olan ve bir özel ağırlıklı ortalamadır.

Böylece eğer bir ağırlıklı ortalama, bir dizi ağırlıksız ortalama ise, her pozitif reel sayı için,

ifadelerine uyan de ağırlıksiz ortalamalardır.


Ağırlıklı ortalamaya dönüşüm

Elemanları tekrarlıyarak herhangi bir ağırlıksız ortalama bir ağırlıklı ortalamaya dönüştürülebilir. Bu özellik herhangi bir ortalamanın, ağirlıklı ortalamaların bir ağırlıklı şeklinin ortalaması olduğu önerilebilir. Bu öneri şöyle biraz daha açıklığa kavuşabilir: Diyelim ki ağırlıkı ortalama ve doğal sayılardan oluşan şu ağırlıklar

verilmiş bulunsun. Bu halde buna karşıt olan ağırlıklı ortalama şöyle elde edilebilir:

Anakütle ve örneklem ortalamaları

Normal dağılım gösteren bir anakütleden gelen bir rastgele örneklem için örneklem ortalamasının beklenen değeri, μ, yani anakütle ortalamasıdır. Böylece örneklem ortalaması, [yansızlık] nokta tahmin kriterine göre anakütle ortalamasının iyi bir tahminidir. Örneklem ortalaması bu halde, kendine ait bir olasılık dağılımı bulunan bir rassal değişken olarak görülmektedir. Normal dağılım gösteren bir anakütleden rastgele bir örneklem yöntemi ile seçilmiş n büyüklükte bir örneklemin ortalamasının örneklem ortalama dağılımı şudur:

Çok kere anakütle varyansı bilinmeyen bir parametredir ve ortalama toplam kareler tahiminden yaklaşık olarak elde edilmiştir. Bu halde örneklem ortalamasının dağılımı, normal dağılım olmaktan çıkıp, n - 1 serbestlik dereceli bir Student'in t dağılımı olur.

Ayrıca bakınız

Kaynakça

  • Bevington, Philip. Data Reduction and Error Analysis for the Physical Sciences.

Dış bağlantılar

İlgili Araştırma Makaleleri

Olasılık kuramı ve istatistik bilim dallarında varyans bir rassal değişken, bir olasılık dağılımı veya örneklem için istatistiksel yayılımın, mümkün bütün değerlerin beklenen değer veya ortalamadan uzaklıklarının karelerinin ortalaması şeklinde bulunan bir ölçüdür. Ortalama bir dağılımın merkezsel konum noktasını bulmaya çalışırken, varyans değerlerin ne ölçekte veya ne derecede yaygın olduklarını tanımlamayı hedef alır. Varyans için ölçülme birimi orijinal değişkenin biriminin karesidir. Varyansın karekökü standart sapma olarak adlandırılır; bunun ölçme birimi orijinal değişkenle aynı birimde olur ve bu nedenle daha kolayca yorumlanabilir.

Regresyon analizi, iki ya da daha çok nicel değişken arasındaki ilişkiyi ölçmek için kullanılan analiz metodudur. Eğer tek bir değişken kullanılarak analiz yapılıyorsa buna tek değişkenli regresyon, birden çok değişken kullanılıyorsa çok değişkenli regresyon analizi olarak isimlendirilir. Regresyon analizi ile değişkenler arasındaki ilişkinin varlığı, eğer ilişki var ise bunun gücü hakkında bilgi edinilebilir. Regresyon terimi için öz Türkçe olarak bağlanım sözcüğü kullanılması teklif edilmiş ise de Türk ekonometriciler arasında bu kullanım yaygın değildir.

Hipotez testi, bir hipotezin doğruluğunun istatistiksel bir güvenilirlik aralığında saptanması için kullanılan yöntem.

Korelasyon, olasılık kuramı ve istatistikte iki rassal değişken arasındaki doğrusal ilişkinin yönünü ve gücünü belirtir. Genel istatistiksel kullanımda korelasyon, bağımsızlık durumundan ne kadar uzaklaşıldığını gösterir.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

<span class="mw-page-title-main">Aritmetik ortalama</span>

Aritmetik ortalama, bir sayı dizisindeki elemanların toplamının eleman sayısına bölünmesi ile elde edilir. İstatistik bilim dalında hem betimsel istatistik alanında hem de çıkarımsal istatistik alanında en çok kullanan merkezi eğilim ölçüsü' dür.

Pauli matrisleri 2 × 2' lik, karmaşık sayılar içeren Hermisyen ve üniter matrislerden oluşan bir settir. Genellikle Yunan alfabesindeki 'sigma' (σ), harfiyle sembolize edilirler. Bu matrisler:

Ortalama veya merkezsel konum ölçüleri, istatistik bilim dalında ve veri analizinde kullanılan bir veri dizisinin orta konumunu, tek bir sayı ile ifade eden betimsel istatistik ölçüsüdür. Günlük hayatta ortalama dendiğinde genellikle kast edilen aritmetik ortalama olmakla beraber bu ölçünün çok belirli bazı dezavantajları söz konusudur. Bu yüzden matematik ve istatistikte, bir anakütle veya örneklem veri dizisi değerlerini temsil eden tek bir orta değer veya beklenen değer, olarak medyan (ortanca), mod (tepedeğer), geometrik ortalama, harmonik ortalama vb adlari verilen birçok değişik merkezsel konum ölçüleri geliştirilmiş ve pratikte kullanılmaktadır.

<span class="mw-page-title-main">Standart sapma</span> İstatistikte bir varyasyon ölçüsü

Standart sapma, Olasılık kuramı ve istatistik bilim dallarında, bir anakütle, bir örneklem, bir olasılık dağılımı veya bir rassal değişken, veri değerlerinin yayılımının özetlenmesi için kullanılan bir ölçüdür. Matematik notasyonunda genel olarak, bir anakütle veya bir rassal değişken veya bir olasılık dağılımı için standart sapma σ ile ifade edilir; örneklem verileri için standart sapma için ise s veya s'

<span class="mw-page-title-main">Çarpıklık</span>

Çarpıklık olasılık kuramı ve istatistik bilim dallarında bir reel-değerli rassal değişkenin olasılık dağılımının simetrik olamayışının ölçülmesidir.

Olasılık kuramı ve bir dereceye kadar istatistik bilim dallarında basıklık kavramı 1905da K. Pearson tarafından ilk defa açıklanmıştır. Basıklık kavramı bir reel değerli rassal değişken için olasılık dağılımının, grafik gösteriminden tanımlanarak ortaya çıkarılan bir kavram olan, sivriliği veya basıklığı özelliğinin ölçümüdür. Basıklık kavramının ayrıntıları olasılık kuramı içinde geliştirilmiştir. Betimsel istatistik için bir veri setinin basıklık karakteri pek dikkate alınmayan bir özellik olarak görülmektedir. Buna bir neden parametrik çıkarımsal istatistik alanında basıklık hakkında hemen hemen hiçbir kestirim veya sınama bulunmamasındandır ve pratik istatistik kullanımda basıklık pek önemsiz bir karakter olarak görülmektedir. Belki de basıklık ölçüsünün elle hesaplanmasının hemen hemen imkânsızlığı buna bir neden olmuştur.

İstatistik bilim dalında D'Agostino'nun K2 sınaması normal dağılımdan ayrılmayı ölçmek için kullanılan bir uygulama iyiliği ölçüsüdür. Örneklem basıklık ve çarpıklık ölçülerinin dönüşümlerinden elde edilmiştir. K2 istatistiği şöyle elde edilir:

İstatistik bilim dalında, Jarque-Bera sınaması normal dağılımdan ayrılmayı ölçmek için kullanılan bir uygulama iyiliği ölçüsüdür. İlk defa bu sınamayi ortaya atan ekonometrici A.K.Bera ve C.M.Jarque adları ile anılmaktadır.

Olasılık kuramı ve istatistik bilim kollarında, çokdeğişirli normal dağılım veya çokdeğişirli Gauss-tipi dağılım, tek değişirli bir dağılım olan normal dağılımın çoklu değişirli hallere genelleştirilmesidir.

<span class="mw-page-title-main">Büyük sayılar yasası</span>

Büyük Sayılar Kanunu ya da Büyük Sayılar Yasası, bir rassal değişkenin uzun vadeli kararlılığını tanımlayan bir olasılık teoremidir. Sonlu bir beklenen değere sahip birbirinden bağımsız ve eşit dağılıma sahip bir rassal değişkenler örneklemi verildiğinde, bu gözlemlerin ortalaması sonuçta bu beklenen değere yakınsayacak ve bu değere yakın bir seyir izleyecektir.

Bir genelleştirilmiş ortalama; Pisagorik ortalamalarını, yani aritmetik ortalama, geometrik ortalama ve harmonik ortalamayı, aynı tanım formülünde birleştirip kapsayan bir soyut genelleştirmedir. Güç ortalaması veya Holder ortalaması adları da verilmektedir.

<span class="mw-page-title-main">Log-normal dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında log-normal dağılım logaritması normal dağılım gösteren herhangi bir rassal değişken için tek-kuyruklu bir olasılık dağılımdır. Eğer Y normal dağılım gösteren bir rassal değişken ise, bu halde X= exp(Y) için olasılık dağılımı bir log-normal dağılımdır; aynı şekilde eğer X log-normal dağılım gösterirse o halde log(X) normal dağılım gösterir. Logaritma fonksiyonu için bazın ne olduğu önemli değildir: Herhangi iki pozitif sayı olan ab ≠ 1 için eğer loga(X) normal dağılım gösterirse, logb(X) fonksiyonu da normaldir.

İstatistiksel ölçülerinin bilgisayar ile yapılan hesaplanmalarında varyans hesaplanması için kullanılan algoritmalar pratik sonuçlar elde edilmesinde önemli rol oynamaktadırlar. Varyansın hesaplanması için işe yarar bilgisayar algoritmalarının tasarlanmasında ana sorun varyans formüllerinin veri kare toplamlarının hesaplanmasını gerektirmesindedir. Bu işlem yapılırken sayısal kararsızlık problemleri ve özellikle büyük veri değerleri bulunuyorsa aritmetik taşmalar problemleri ortaya çıkması çok muhtemeldir.

Matematik ve istatistik bilim dallarında genelleştirilmiş f-ortalaması merkezsel konum ölçülerinden olan değişik ortalamalar için tek bir genel fonksiyon ve formül bulma ve kullanma çabaları sonucu ortaya çıkarılmıştır. Benzer çabalar biraz değişik diğer bir genelleştirilmiş ortalama formülünü vermiştir. Bu nedenle isim karışıklığını önlemek için f-ortalaması çeşitli diğer isimlerde de anılmaktadır. Bazen yarı-aritmetik ortalama adı kullanılmaktadır. Bu kavramı ve formülü ilk geliştiren Rus matematikçisi A.Kolmogorov adına atfen de bazen Kolmogorov ortalaması olarak isimlendirilmektedir.

<span class="mw-page-title-main">Logaritmik ortalama</span>

Matematikte logaritmik ortalama, iki pozitif gerçek sayının farkının bu sayıların doğal logaritmalarının farkına oranı olarak tanımlanır. Bu hesaplama, ısı ve kütle transferi içeren mühendislik problemlerinde kullanılabilir.