İçeriğe atla

Ayrılma belitleri

Topolojik uzaylarda
ayrılma belitleri
Kolmogorov sınıflandırması
T0 (Kolmogorov)
T1 (Fréchet)
T2 (Hausdorff)
T2½(Urysohn)
tamamen T2 (tamamen Hausdorff)
T3 (düzenli Hausdorff)
T(Tychonoff)
T4 (normal Hausdorff)
T5 (tamamen normal
 Hausdorff)
T6 (mükemmel normal
 Hausdorff)
  • Tarihçe

Ayrılma belitleri bir topolojik uzayın üzerine konan ve noktaların ve altkümelerin birbirilerinden ne kadar ayrı olduğunu belirten belitler ailesi. Bir topolojik uzayın bu belitlerden birini sağladığı söylendiğinde, topolojisi hakkında global bir bilgi verilmiş ve topolojinin cinsi daraltılmış olur. Örneğin, topolojinin sahip olduğu açık kümelere bakmaksızın o topolojinin T0 olduğunu söylemek, topolojik uzayda seçilmiş herhangi iki noktanın birbirlerinden ayırt edilebilir olduğunu garanti eder.

Ayrılma belitleri Almancada ayrılma anlamına gelen Trennung sözcüğüne atıfta bulunarak T harfiyle gösterilir. Bu belitlerden bazıları çok eskiden ifade edilmiştir, bazıları daha yenidir. Kimileri çalışılan matematik dalına göre ifadesinde farklılık göstermiş ve zaman içinde şöyle böyle standart bir listeye kavuşulmuştur. Kaynağına bağlı olarak adlandırmalar farklılık gösterebilir.

Matematiksel tanımlar

X topolojik bir uzay olsun.

Illustrations of the properties of Hausdorffness, regularity and normality
Hausdorff, düzenli (İng. regular) ve normal uzaylar. Mavi alanlar açık kümeleri, kırmızı alanlar kapalı kümeleri, kara yuvarlaklar noktaları temsil ediyor.
  • Eğer X'te herhangi iki nokta topolojik olarak birbirinden ayıredilebiliyorsa, yani içerildikleri açık kümeler tamamen birbirlerinin aynı değilse (yani birini içeren ve diğerini içermeyen en az bir açık küme varsa) X uzayına T0 ya da Kolmogorov denir.
  • Eğer birbirinden ayırdedilebilir her nokta çifti birbirinden ayrılabiliyorsa, yani birinciyi içeren ve ikinciyi içermeyen en az bir açık küme ve ikinciyi içeren ve birinciyi içermeyen en az bir açık küme varsa, X 'e R0 ya da simetrik denir.
  • Eğer birbirinden farklı her nokta çifti hem birbirinden ayırdedilebiliyorsa hem de ayrılabiliyorsa, X'e T1, ya da Fréchet topolojisine sahip denir. Yani T1 olmak, T0 ve R0 olmak demektir. Böyle bir uzayda tek tek noktalar birer kapalı altkümedir.
  • Eğer birbirinden farklı her nokta çiftinin birbirinden ayrık birer komşuluğu varsa, X'e Hausdorff ya da T2 ya da ayrılmış denir. Bir Hausdorff uzay hem T0 hem R0'dır yani T1'dir. Fazladan istenen şey, noktaları birbirinden ayıran açık kümelerin ayrık seçilebilmesidir.
  • Eğer Hausdorff'luk belitinde noktaları ayıran ayrık kümeler kapalı seçilebiliyorsa, X'e T, ya da Urysohn denir. Tabii, tanım gereği T uzay Hausdorff'tur.
  • Eğer verilen her kapalı küme ve onun içinde olmayan her nokta için, kümenin ve noktanın ayrık açık komşulukları bulunabiliyorsa, X'e düzenli denir.
  • X hem düzenli hem de T1'se, X'e düzenli Hausdorff ya da T3 denir. Böyle bir uzay Hausdorff'tur çünkü her bir nokta kapalı bir altkümedir. Düzenli Hausdorff uzay T'tur.
  • X hem T1 uzaysa hem de verilen her kapalı K kümesi ve dışındaki her x noktası birbirinden sürekli bir fonksiyonla ayrılabiliyorsa, yani X 'ten reel sayılara K 'de 0 x 'te 1 değerini alan sürekli bir fonksiyon bulunabiliyorsa, X'e Tychonoff, ya da T, ya da tamamen düzenli Hausdorff denir.
  • Eğer verilen her kapalı ayrık küme çifti birbirilerinden açık kümelerle ayrılıyorsa, yani kapalı kümeleri içeren iki tane ayrık açık küme bulunabiliyorsa, X'e normal denir. Urysohn önsavına göre, normal bir uzayda kapalı ayrık kümeler aynı zamanda fonksiyonlarla da ayrılabilir.
  • X hem T1 hem de normal ise, X'e normal Hausdorff, ya da T4 denir. Urysohn önsavı, T4 uzayın T olduğunu garanti eder.
  • X hem T1'se hem de tamamen normal ise, yani herhangi iki küme çifti açık komşuluklarıyla ayrılabiliyorsa, X'e tamamen normal Hausdorff ya da T5 denir.
  • Verilen her kapalı ayrık küme çifti K ve L için, bunları birbirilerinden ayıran sürekli bir fonksiyon varsa ve bu fonksiyon altında 0'ın ters görüntüsü K, 1'in ters görüntüsü L ise, X'e mükemmel normal Hausdorff ya da T6 denir.

Yukarıda saydığımız ayrılma belitlerinin tanımdan gelen bir hiyerarşileri vardır. Listede daha başta olanlar, sonra gelenlerden daha genel durumlardır:

T0 > T1 > T2 > T > T3 > T > T4 > T5 > T6.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Topoloji</span>

Topoloji, matematiğin ana dallarından biridir. Yunancada yer, yüzey veya uzay anlamına gelen topos ve bilim anlamına gelen logos sözcüklerinden türetilmiştir. Topoloji biliminin kuruluş aşamalarında yani 19. yüzyılın ortalarında, bu sözcük yerine aynı dalı ifade eden Latince analysis situs ür.

Topolojik uzaylar, matematiğin Topoloji dalının başlıca uğraş konularıdır. Bir X kümesi ve bu kümenin alt kümelerinin bir kısmını içeren ve aşağıdaki varsayımları sağlayan S kümesinden oluşurlar:

Tıkızlık, topolojik uzayların sahip olabileceği başlıca özelliklerden biridir. Bir X uzayı ve birleşimleri X uzayını kaplayan herhangi bir açık kümeler topluluğu verildiğinde, bu topluluğun içinden sonlu sayıda açık küme hala X uzayını kaplayabiliyorsa, X uzayına tıkız (kompakt) denir. Gerçel sayılar kümesi (), üzerindeki standart topolojiye göre tıkız değildir, ancak ’nin her kapalı ve sınırlı alt kümesi altuzay topolojisine göre tıkızdır. Matematiğin diğer pek çok alanında olduğu gibi, sonsuz bir nesnenin sonlu bir nesneye indirgenebilmesi çok önemli avantajlar sağladığı için topoloji alanında ve topolojik yöntemler kullanan diğer alanlarda vazgeçilmez bir kavramdır.

<span class="mw-page-title-main">Homeomorfizma</span>

Homeomorfizma veya topolojik eşyapı , matematiksel alanda topolojinin incelediği temel konulardan biridir ve iki uzayın parça koparmadan sürekli olarak birbirine dönüşümünü inceler. Kelime Yunanca homoios "benzer" ve morphē "şekil-şeklini bozmak" kelimelerinden türemiştir. Bu benzeşimler birçok değişken altyapı işlevleri ile açıklanabilir.

Yüzey, matematikte ve özellikle topolojide iki boyutlu çokkatlı. İki gerçel değişkenli ve gerçel değerli bir fonksiyonun üç boyutlu uzayda (R³) grafiği tipik yüzey örneğidir. Ayrıca Dünya yüzeyi, bir yumurtanın kabuğu, bir simit birer yüzeydir.

<span class="mw-page-title-main">Çok katlı</span>

Çok katlı, topolojide soyut topolojik bir uzay. Bu uzayın her noktasının çevresi Öklit uzayına benzer. Bununla birlikte, çok katlı bir Öklit uzayı olmak zorunda değildir. Genel yapısı, bu basit yerel yapısından çok daha karmaşık olabilir. Çok katlının boyutu, yerel olarak benzediği Öklit uzayının boyutu olarak tanımlanır. Herhangi bir topolojik uzay içinse boyut kavramından söz etmek genelde olası değildir.

<span class="mw-page-title-main">Simit (geometri)</span>

Topolojide ve geometride simit (torus) bir yüzeydir. Üç boyutlu uzayda bir çemberin, aynı düzlemde yatan ve çembere değmeyen bir doğru etrafında döndürülmesiyle elde edilir. Yiyecek simidin ya da yüzmek için kullanılan şişirilmiş iç lastiğin yüzeyi matematiksel olarak birer simittir.

Bölüm topolojisi, bir topolojik uzaydan başka bir topolojik uzay elde etmenin klasik yollarından biridir. Bir topolojik uzayda kimi noktaların birbirine yapıştırılmasıyla (özdeşleştirilmesiyle) elde edilen yeni kümenin üzerine konacak bölüm topolojisi, bu yeni kümeyi yeni bir topolojik uzaya dönüştürür. Bu yeni uzaya bölüm uzayı denir. Örneğin [0,1] kapalı aralığı bir topolojik uzaydır. Bu uzayda 0 ve 1 noktaları özdeşleştirilir ve bu yeni kümeye bölüm topolojisi verilirse oluşturulan topolojik uzay düzlemde birim çember olur. Başka bir örnek: düzlemde yatan birim yarıçaplı dairenin kenarının üst tarafındaki her bir nokta kenarın alt tarafında karşılık gelen noktaya yapıştırılır ve bu yeni kümenin üzerine bölüm topolojisi konursa, bu topolojik uzay 3 boyutlu Öklit uzayında birim yarıçaplı küre olur.

Topolojide tıkız-açık topoloji, bir topolojik uzaydan bir diğerine tüm sürekli gönderimlerin oluşturduğu küme üzerine konan bir topolojidir. Fonksiyonel analizde fonksiyon uzaylarına konan doğal bir topolojidir.

Topolojide altuzay topolojisi ya da tetiklenmiş topoloji, topolojik bir uzay içinde bir altkümeye konulabilecek en doğal topolojidir. Bu topoloji verilmiş altkümeyeyse (topolojik) altuzay denir.

Matematikte deste, bir topolojik uzayın açık altkümelerine ilişkin yerel tanımlı verilerin sistematik olarak incelenmesini sağlayan bir araçtır.

Fonksiyonlar, sahip oldukları özelliklere göre sınıflandırılabilir.

Hausdorff uzay ya da T2 uzay ya da ayrılmış uzay, herhangi iki noktasının birbirinden ayrık komşuluklara sahip olduğu topolojik uzay. Bir topolojik uzayı geometrik sezgiye yakın duruma getiren ilk kabullerden biri Hausdorffluk koşuludur (ya da T2 koşulu). Örneğin bir Hausdorff uzayın her bir noktası, kapalı bir altuzaydır. Ayrıca bir Hausdorff uzayda her yakınsak dizinin, ağın ya da süzgecin yakınsadığı nokta tektir. Hausdorff koşulu, ilk olarak Alman matematikçi Felix Hausdorff tarafından önerilmiş ve onun adıyla anılır olmuştur.

Matematikte fonksiyon uzayı bir X kümesinden bir Y kümesine tanımlı fonksiyonların oluşturduğu kümeye verilen bir addır. Fonksiyonlar kümesi yerine fonksiyon uzayı denilmesinin nedeni matematiğin kendi içindeki uygulamalarında bu kümenin genellikle topolojik uzay veya vektör uzayı olarak ortaya çıkmasıdır.

Pro sonlu gruplar, Matematikte ilk olarak sayılar kuramında görülmüştür. 19. yüzyılın sonlarına doğru kongurans sistemlerini çalışmak için Alman matematikçi Hensel tarafından bulunan p-sel tamsayılar halkası Zp, pro-sonlu grupların en temel örneklerinden birisidir. Alman matematikçi Krull herhangi bir sonsuz Galois genişlemesinin Galois grubunun aslında doğal bir şekilde pro-sonlu grup yapısına sahip olduğunu gördü. Bu yapının sonlu Galois genişlemelerinin Galois gruplarıyla belirlendiğini gösterdi. Daha sonra, cebirsel geometri alanında Grothendieck, şemaların temel gruplarını birer pro-sonlu grup olarak tanıttı.

Homotopi, temel grup cebirsel topolojiden gelen ve topolojik uzayın neye benzediğini anlamak için kullanılan bir araçtır. Yani topolojik uzayın cebirsel bir tasvirini bize verir. Sezgisel olarak şöyle: X bir topolojik uzay ve x0, X'in bir elemanı olsun. x0 noktasında başlayıp X üzerinde kalarak x0 biten yolların hepsini düşünün. Bunlar topolojik uzay üzerinde bir eğri oluştururlar. Bu şekilde başlangıç ve bitiş noktası aynı olan yollara ilmek denir. Bazı ilmekler birbirine homotopik olarak denk, bazıları da değildir. Birbirine denk olan ilmekler arasında hiçbir fark görmememiz gerekmektedir. Oluşturulan bu küme π1(X,x0) şeklinde yazılır. Bu küme x0 noktasındaki başlayıp biten tüm yollardan oluşur ve birbirine homotopik olan ilmekler bu kümede aynı elemandır. Bu küme üzerinde şöyle bir işlem tanımlayalım: İki tane ilmeği alalım ve uç uca ekleyelim. π1(X,x0) kümesi bu işlemle bir grup yapısı oluşturur.

Topolojide ve matematiğin ilgili alanlarında, X bir topolojik uzay ve A ise bu topolojik uzayın bir alt kümesi olmak üzere, eğer X kümesindeki her x noktası A kümesine de ait ise veya bu x noktası A kümesinin bir yığılma noktası ise bu A kümesine X topolojik uzayında yoğun küme denir. Kısaca, A kümesinin kapanışının X topolojik uzayına eşit olması durumudur.

Ayrık uzay, bir topolojik uzay ya da benzer yapının özellikle basit bir örneğidir. Burada noktaların süreksiz bir dizi oluşturduğu, yani belirli bir anlamda birbirlerinden izole oldukları anlamına gelir. Ayrık topoloji, bir küme üzerinde verilebilecek en iyi topolojidir, yani tüm alt kümeleri açık kümeler olarak tanımlar. Özellikle, her bir tek nesne ayrık topolojide açık bir kümedir.

<span class="mw-page-title-main">Ölçü (matematik)</span> uzunluk, alan, hacim ve integralin bir genellemesi olarak görülebilecek bir kümenin bazı alt kümelerine sayılar atayan işlev

Matematiksel analizde, küme üzerindeki bir ölçü, bu kümenin her bir uygun alt kümesine bir sayı atamanın sistematik bir yoludur ve sezgisel olarak kümenin boyutu olarak yorumlanır. Bu anlamda ölçü, uzunluk, alan ve hacim kavramlarının bir genellemesidir. Özellikle önemli bir örnek, Öklid geometrisinin geleneksel uzunluğunu, alanını ve hacmini n-boyutlu Öklid uzayının Rn uygun alt kümelerine atayan bir Öklid uzayındaki Lebesgue ölçüsüdür. Örneğin, gerçek sayılardaki [0, 1] aralığının Lebesgue ölçüsü, kelimenin günlük anlamındaki uzunluğudur ve tam olarak 1'dir.

<span class="mw-page-title-main">Genel topoloji</span>

Matematikte, genel topoloji, topolojide kullanılan temel kümeler teorisi tanımları ve yapılarıyla ilgilenen topoloji dalıdır. Diferansiyel topoloji, geometrik topoloji ve cebirsel topoloji dahil diğer birçok topoloji dalının temelini oluşturur.