İçeriğe atla

Ayrık olasılık dağılımları

Bir ayrık olasılık dağılımı için olasılık kütle fonksiyonu. Tek veri değerleri olan {1}, {3} ve {7} için olasılık değerleri 0.2, 0.5, 0.3 olarak bulunur. Bu değerleri kapsamayan bir veri seti için olasılık sıfır olur.
Yukarıdan aşağıya doğru: bir ayrık olasılık dağılımı için, bir sürekli olasılık dağılımı için ve hem sürekli hem de ayrık kısımları bulunan bir olasılık dağılımı için yığmalı olasılık fonksiyonu.

Olasılık kuramı içinde bir olasılık dağılımı eğer bir olasılık kütle fonksiyonu ile karakterize edilmiş ise ayrık olarak anılır. Böylelikle bir rassal değişken olan X için dağılım ayrık ise o zaman X bir ayrık rassal değişken olarak bilinir. Bu halde

olur ve burada u X için bütün mümkün değerler serisini ihtiva eder. Böyle bir rassal değişken ancak sonsuz sayılı veya sayılabilir sonsuz sayılı değerler alabildiği bu tanımdan ortaya çıkar. Eğer mümkün değerler sayılabilir sonsuz tane ise ve her birinin olasılık değerinin toplamları 1'e eşit olmasi gerekmekte olması bu olasılık sayılarının pek hızlı bir şekilde 0'a erişmesini gerektirmektedir. Örneğin eğer
her n = 1, 2, ..., için ise
olasılıkların toplamı şudur:
1/2 + 1/4 + 1/8 + ... = 1.

Klasik tanım

Olasılık kuramı geliştirilmesinin ilk safhalarında olasılık şans aletleri ile açıklanmakta idi. Şu şans aletleri sayılabilir: havaya atılan bir madeni paranın yazı-tura gelmesi, altı yüzlü bir zar atılması, üstü sektörel parçalara bölünmüş bir döner alet (örneğin rulet tekerleği), iskambil kâğıtları, içinde belirli sayıda değişik nesne bulunan küp veya küp benzerleri. Bu halde belirtilmiş bir olay ortaya çıkması için olasılık, her mümkün sonucu eşit olasılıklı olan örneklem uzayında incelenmektedir. Bunlardan benzerlik çıkarılarak, olasılık incelenen olaya uygun sonuç sayısının toplam tüm sonuçlar sayısına oranı olarak tanımlanmıştı. Örneğin, incelenecek sorun "tek bir zar atılınca çift sayıların gelme olasılığı nedir" şeklinde olsun. Zar yansız olup her altı yüzü de eşit olasılıkla gelebileceği için, 2, 4, 6 sonuçları 3 tane olduğu ve toplam mümkün sonuç sayısı 6 yüze dayanarak 6 olduğu için, aranan olasılık

P( 2 veya 4 veya 6 ) =

olarak bulunur.

Modern tanım

Modern tanıma örneklem uzayı adı verilen bir küme ile başlanır; bu klasik tanımda kullanılan mümkün tüm sonuçlar seti ile aynı anlamlıdır; ve şu notasyon kullanılarak ifade edilir: . Sonra, içinde bulunan her matematik elemana bir olasılık değeri bağlı olduğu varsayılır ve bu olasılık değerinin şu özellikleri bulunduğu kabul edilir:

Bu demektir ki olasılık fonksiyonu olan f(x) Ω örneklem uzayında bulunan her x değeri için 0 ile 1 arasında bulunmaktadır ve x için tüm mümkün değerler için f(x) değerlerinin toplamı tama tam 1e eşit olur. Bir olay örneklem uzayının herhangi bir altseti olarak tanımlanır. olayının 'olasılık değeri ise şöyle tanımlanır:

Buna göre tüm örneklem uzayının olasılığı 1e eşittir ve boş örneklem uzayı veya 0 olay için de olasılık 0a eşit olur.

Örneklem uzayındaki bir noktayı "olasılık" değerine eşleyen fonksiyona, yani fonksiyonuna, olasılık kütle fonksiyonu adı verilir. Bir olasılık dağılımı eğer bir olasılık kütle fonksiyonu ile karakterize edilmiş ise ayrık dağılım olarak nitelendirilir. Bir X rassal değişkeni için dağılım ayrık ise, o halde X bir ayrık rassal değişken olarak tanımlanır ve Xin bütün mümkün değerler serisini ihtiva eden u için

olur.

Eğer bir rassal değişken aralıklı ise, sıfır-olmayan olasılık taşıyan her değerin seti, bir sonsuz olmayan veya sayılabilir şekilde sonsuz olan, sayıda bir settir. Bu mümkün değerler seti topolojik olarak ayrık bir settir çünkü set içindeki her nokta tek tekdir; diğerlerinden ayrılmıştır ve bu noktalar sayılabilir.

Ayrık dağılımlar arasında en iyi bilinenleri Poisson dağılımı, Bernoulli dağılımı, binom dağılım, geometrik dağılım, negatif binom dağılımıdir.

Değişik bir tanımlama

Yukarıda verilen tanıma benzer olarak, fakat değişik bir bakışla, bir ayrık rassal değişken için yığmalı dağılım fonksiyonu yalnızca sıçrama devamsızlığı göstererek büyüme gösterir. Bu demektir ki yığmalı dağılım fonksiyonu daha büyük değere sıçrama yaptığı zaman büyüme gösterir ve bu sıçramayı yapmadan sabit kalır. Sıçrama yapılan noktalar aynen rassal değişkenin değer aldığı noktalardır. Bu türlü sıçramalar ya sonludur veya sayılabilir sonsuz olurlar. Bu sıçrama noktalarının konumu topolojik olarak ayrık olmayabilir; örneğin yığmalı olasılık dağılımı her rasyonel sayıda sıçrama gösterebilir.

Gösterge fonksiyonları terimleri ile ifade edilme

Bir ayrık rassal değişken X için u0, u1, ... sıfır olmayan olasılık değerler aldığı varsayılan sayılar olsun. Şu fonksiyon gösterilsin

Bunlar kopuk setlerdir ve formül (1) nedeniyle

Bundan çıkarılır ki Xin u0, u1, ... dışında alabileceği herhangi bir değer için olasılık 0 olur. O halde, sıfır olasılıklı değerler setinin dışında X şöyle yazılabilir:

Burada ve , A için bir gösterge fonksiyonudur. Bu sonuç da ayrık rassal değişkenleri tanımlama için bir alternatif olarak kullanılabilir.

Örnekler

Örnek olarak şu önemli ayrık olasılık dağılımlar verilmektedir. Bu liste mümkün olan tüm ayrık olasılık dağılımları ihtiva etmemektedir:

  • Ayrık tekdüze dağılım: Bir sonlu set içinde bulunan tüm elemanlar aynı eşit olabilirliktedirler. Bu teorik olarak bir hilesiz madeni para, bir kusursuz zar, bir kumarhane rulet tekerleği veya iyice karılmış iskambil kâğıtları için uygun olan olasılık dağılımıdır. Bilgisayarların yaygın olarak kullanılması sonucu özel veya genel işlerde kullanılan bilgisayarlar sözde-rassal-sayı üreticiler olarak kullanılıp ayrık tekdüze rassal değişken sayıları üretilmektedir.
  • Bernoulli dağılımı: 1 değeri için p olasılığı ve 0 değeri için q = 1 - p olasılığı alır.
  • Binom dağılım: Bir seri bağımsız Evet/Hayır (Başarılı/Başarısız) sonuçlu deneylerdeki başarılılık sayısını tanımlar.
  • Poisson dağılımı: Belli bir zaman aralığında (veya belirli bir birim aralık içinde) teker teker, az olabilirlikli olarak ortaya çıkan çok büyük sayıda olayları tanımlar.
  • Geometrik dağılım: Bir seri Evet/Hayır sonuçlu denemelerde birinci başarıyı elde etmek için gerekli deneme sayısının olasılığını açıklar.
  • Hipergeometrik dağılım: Eğer toplam başarılılık sayısı bilinirse, n tane bağımsız Evet/Hayır (Başarılı/Başarısız) deneylerde ilk m sayıda başarılılık olasılığını tanımlar.
  • Bozulmuş dağılım: Sadece x0da bulunur. Burada X mutlaka hiç olasılıksız x0 değeri alır. Bu rassal gibi gözükmez ama matematikte verilen rassal değişken tanımlamasına uygunluk gösterir. Bu dağılım belirli deterministik değişkenler ile rassal değişkenlerinin ayni matematiksel biçimde incelenmesine imkân verir.

Ayrıca bakınız

Dış bağlantılar

İlgili Araştırma Makaleleri

Olasılık kuramı ve istatistik bilim dallarında varyans bir rassal değişken, bir olasılık dağılımı veya örneklem için istatistiksel yayılımın, mümkün bütün değerlerin beklenen değer veya ortalamadan uzaklıklarının karelerinin ortalaması şeklinde bulunan bir ölçüdür. Ortalama bir dağılımın merkezsel konum noktasını bulmaya çalışırken, varyans değerlerin ne ölçekte veya ne derecede yaygın olduklarını tanımlamayı hedef alır. Varyans için ölçülme birimi orijinal değişkenin biriminin karesidir. Varyansın karekökü standart sapma olarak adlandırılır; bunun ölçme birimi orijinal değişkenle aynı birimde olur ve bu nedenle daha kolayca yorumlanabilir.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

Rassal değişken kavramının geliştirilmesi ile, sezgi yoluyla anlaşılan şans kavramı, soyutlaştırarak teorik matematik analiz alanına sokulmuş ve bu geliştirilen matematik kavram ile olasılık kuramı ve matematiksel istatistiğin temeli kurulmuştur.

Merkezi limit teoremi büyük bir sayıda olan bağımsız ve aynı dağılım gösteren rassal değişkenlerin aritmetik ortalamasının, yaklaşık olarak normal dağılım göstereceğini ifade eden bir teoremdir. Matematiksel bir ifadeyle, bir merkezi limit teoremi olasılık kuramı içinde bulunan bir zayıf yakınsama sonucu setidir. Bunların hepsi, birçok bağımsız aynı dağılım gösteren rassal değişkenlerin herhangi bir toplam değerinin limitte belirli bir "çekim gücü gösteren dağılıma" göre dağılım gösterme eğiliminde olduğu gerçeğini önerir.

<span class="mw-page-title-main">Binom dağılımı</span>

Olasılık kuramı ve istatistik bilim kollarında, binom dağılımı n sayıda iki kategori (yani başarı/başarısızlık, evet / hayır, 1/0 vb) sonucu veren denemelere uygulanır. Araştırıcının ilgi gösterdiği kategori başarı olarak adlandırılır. Bu türlü her bir deneyde, bağımsız olarak, başarı (=evet=1) olasılığının p olduğu (ve yalnızca iki kategori sonuç mümkün olduğu için başarısızlık olasılığının 1 - p olduğu) bilinir. Bu türlü bağımsız n sayıda denemeler serisi içinde elde edilen başarı sayısının ayrık olasılık dağılımı binom dağılım olarak tanımlanır. Bir binom dağılım sadece iki parametre ile, yani n ve p ile tam olarak tanımlanır. Matematik notasyon olarak bir rassal değişken X binom dağılım gösterirse şöyle ifade edilir:

X ~ B(n,p)

Bernoulli dağılımı olasılık kuramı ve istatistik bilim dallarında, p olasılıkla başarı ile 1 değeri alan ve olasılıkla başarısızlık ile 0 değeri alan bir ayrık olasılık dağılımıdır. İsmi ilk açıklamayı yapan İsviçreli bilim insanı Jakob Bernoulli anısına verilmiştir.

<span class="mw-page-title-main">Geometrik dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında geometrik dağılım şu iki şekilde ifade edilebilen ayrık olasılık dağılımıdır:

Bir olasılık dağılımı bir rassal olayın ortaya çıkabilmesi için değerleri ve olasılıkları tanımlar. Değerler olay için mümkün olan tüm sonuçları kapsamalıdır ve olasılıkların toplamı bire eşit olmalıdır. Örneğin, bir rassal olay olarak madeni paranın tek bir defa havaya atılıp yere düşmesi ele alınsın; değerler 'yazı' veya 'tura' veya bunlar isimsel değişken ölçeğinde ifade edilirse 0 (yazı) veya 1 (tura) olur; olasılıklar ise her iki değer için ½ olacaktır. Böylece madeni bir paranın tek bir defa atılma olayı için iki değer ve ilişkili iki olasılık bu rassal olayın olasılık dağılımı olur. Bu dağılım ayrık olasılık dağılımıdır; çünkü sayılabilir şekilde ayrı ayrı sonuçlar ve bunlara bağlı olan pozitif olasılıklar vardır.

<span class="mw-page-title-main">Tekdüze dağılım (ayrık)</span>

Ayrık tekdüze dağılım, olasılık kuramı ve istatistik bilim kollarında, bir rassal değişken için belirli bir alt ve üst sınır tam sayı arasında mümkün olan bir sıra tam sayı sonuç değerlerin hepsinin eşit ölçüde olasılık göstermesi özelliğini taşıyan ayrık olasılık dağılımıdır.

<span class="mw-page-title-main">Bozulmuş dağılım</span>

Matematik bilim dalında bir bozulmuş dağılım desteği sadece tek bir noktadan oluşan bir ayrık rassal değişken için bir olasılık dağılımıdır. Bu rassal değişken için örnekler her iki tarafı da yazı olan özel bir madeni disk veya her altı yüzü de aynı sayıyı gösteren özel bir zar olabilir. Örneklerden de görülebildiği gibi, bu türlü rassal değişken günlük yaşantıya göre hiç rastgelelik niteliği taşımamaktadır; ancak matematik bilimi içinde bulunan rassal değişken tanımlama özelliklerinin hepsini tatmin etmektedir.

Olasılık kuramı ve bir dereceye kadar istatistik bilim dallarında basıklık kavramı 1905da K. Pearson tarafından ilk defa açıklanmıştır. Basıklık kavramı bir reel değerli rassal değişken için olasılık dağılımının, grafik gösteriminden tanımlanarak ortaya çıkarılan bir kavram olan, sivriliği veya basıklığı özelliğinin ölçümüdür. Basıklık kavramının ayrıntıları olasılık kuramı içinde geliştirilmiştir. Betimsel istatistik için bir veri setinin basıklık karakteri pek dikkate alınmayan bir özellik olarak görülmektedir. Buna bir neden parametrik çıkarımsal istatistik alanında basıklık hakkında hemen hemen hiçbir kestirim veya sınama bulunmamasındandır ve pratik istatistik kullanımda basıklık pek önemsiz bir karakter olarak görülmektedir. Belki de basıklık ölçüsünün elle hesaplanmasının hemen hemen imkânsızlığı buna bir neden olmuştur.

Olasılık teorisi ya da ihtimaliyet teorisi rastgele olayların analizi ile ilgilenen bir matematik bilim dalıdır. Olasılık teorisinin ana ögeleri rassal değişkenler, saf rassal süreçler, olaylar olarak sayılabilir. Bunlar ya tek olarak ortaya çıkan veya bir zaman dönemi içinde gelişerek meydana gelen, ilk görünüşü rastgele bir şekilde olan deterministik olmayan olayların veya ölçülebilir miktarların matematiksel soyutlamalarıdır. Bir madeni parayı yazı-tura denemesi için havaya atmak veya bir zarı atmak ile ortaya çıkan sonuç ilk bakışta rastgele bir olay olarak görülebilirse bile eğer birbirini takip eden rastgele olaylar tekrar tekrar ortaya çıkartılırsa incelenebilecek ve tahmin edilebilecek belirli bir istatistiksel seyir takip ettikleri görülecektir. Bu türlü olaylar ve sonuçların seyirlerini betimleyen iki temsilci matematiksel sonuç büyük sayılar yasası ve merkezsel limit teoremidir.

Olasılık kuramı içinde bir olasılık dağılımı, eğer yığmalı dağılım fonksiyonu bir sürekli fonksiyon ise dağılım da sürekli olarak anılır. Bu demektir ki incelenmekte olan dağılımı gösteren X rassal değişkeni için; tüm reel sayı olan a için

Pr[X = a] = 0
<span class="mw-page-title-main">Olasılık kütle fonksiyonu</span>

Olasılık kuramı bilim dalında bir olasılık kütle fonksiyonu bir ayrık rassal değişkenin olasılığının tıpatıp belli bir değere eşit olduğunu gösteren bir fonksiyondur. Olasılık kütle fonksiyonu, olasılık yoğunluk fonksiyonundan farklıdır; çünkü olasılık yoğunluk fonksiyonu yalnızca sürekli rassal değişkenler için tanımlanmış olup doğrudan doğruya olasılık değerini vermezler. Olasılık yoğunluk fonksiyonunun bir belli değer aralığı için integrali alınırsa bu rassal değişkenin belirlenen değer aralığı için olasılığını verir.

Olasılık kuramı ve istatistik bilim dallarında birikimli dağılım fonksiyonu bir reel değerli rassal değişken olan Xin olasılık dağılımını tümüyle tanımlayan bir fonksiyondur. Olasılık dağılım fonksiyonu veya sadece dağılım fonksiyonu olarak da anılmaktadır. Her bir reel sayı olan x için X'in birikimli dağılım fonksiyonu şöyle ifade edilir:

Olasılık kuramı ve istatistik bilim dallarında bir rassal değişken X için olasılık yoğunluk fonksiyonu bir reel sayılı sürekli fonksiyonu olup f ile ifade edilir ve şu özellikleri olması gereklidir:

Matematik bilimi içinde moment kavramı fizik bilimi için ortaya çıkartılmış olan moment kavramından geliştirilmiştir. Bir bir reel değişkenin reel-değerli fonksiyon olan f(x)in c değeri etrafında ninci momenti şöyle ifade edilir:

Olasılık kuramı bilim dalında matematiksel beklenti veya beklenen değer veya ortalama birçok defa tekrarlanan ve her tekrarda mümkün tüm olasılıklarını değiştirmeyen rastgele deneyler sonuçlarından beklenen ortalama değeri temsil eder. Bir ayrık rassal değişkennin alabileceği bütün sonuç değerlerin olasılıklarıyla çarpılması ve bu işlemin bütün değerler üzerinden toplanmasıyla elde edilen değerdir. Bir sürekli rassal değişken için rassal değişken ile olasılık yoğunluk fonksiyonunun çarpımının aralığı belirsiz integralidir. Fakat dikkat edilmelidir ki bu değerin genel pratik anlamla rasyonel olarak beklenmesi pek uygun olmayabilir, çünkü matematiksel beklentiin olasılığı çok düşük belki sıfıra çok yakın olabilir ve hatta pratikte matematiksel beklenti bulunmaz. Ağırlıklı ortalama olarak da düşünülebilir ki değerler ağırlık katsayıları verilen olasılık kütle fonksiyonu veya olasılık yoğunluk fonksiyonudur.

Koşullu beklenti, koşullu beklenen değer veya koşullu ortalama, olasılık kuramı bilim dalında bir reel değerli rassal değişken için bir koşullu olasılık dağılımı na göre matematiksel beklentidir.

<span class="mw-page-title-main">Bir olayın olma olasılığı</span>

Olasılık yoğunluk fonksiyonu, olasılık kuramı ve bir olayın olma olasılığı dallarında bir rassal değişken olan X için reel sayılı sürekli fonksiyondur.