İçeriğe atla

Ayrık diferansiyel geometri

Ayrık diferansiyel geometri diferansiyel geometri içindeki kavramların ayrık karşılıklarının çalışmasıdır. Bunun yerine düzgün eğriler ve yüzeyler, burada çokgenler, örgüler ve yalın karmaşıklıklardır. Bu bilgisayar grafikleri ve topolojik kombinatoriklerin çalışması içinde kullanılabilir.

Ayrıca bakınız

  • Ayrık Laplace operatörü
  • Ayrık dış hesap
  • Ayrık Morse teorisi
  • Topolojik kombinatorik
  • Spektral şekil analizi
  • Özet diferansiyel geometri
  • Fraktaller üzerinde analiz

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Matematik</span> nicelik, yapı, uzay ve değişim gibi konularla ilgilenen bilim dalı

Matematik ; sayılar, felsefe, uzay ve fizik gibi konularla ilgilenir. Matematikçiler ve filozoflar arasında matematiğin kesin kapsamı ve tanımı konusunda görüş ayrılığı vardır.

<span class="mw-page-title-main">Diferansiyel denklem</span>

Matematikte, diferansiyel denklem, bir ya da birden fazla fonksiyonu ve bunların türevlerini ilişkilendiren denklemdir. Fizik, kimya, mühendislik, biyoloji ve ekonomi alanlarında matematiksel modeller genellikle diferansiyel denklemler kullanılarak ifade edilirler. Bu denklemlerde, fonksiyonlar genellikle fiziksel ya da finansal değerlere, fonksiyon türevleriyse değerlerin değişim hızlarına denk gelir.

<span class="mw-page-title-main">Akışkanlar dinamiği</span> hareket halindeki akışkanların (sıvılar ve gazlar) doğal bilimi

Fizik, fiziksel kimya ve mühendislikte akışkanlar dinamiği, akışkanların akışını tanımlayan akışkanlar mekaniğinin bir alt disiplinidir. Aerodinamik ve hidrodinamik dahil olmak üzere çeşitli alt disiplinleri vardır. Akışkanlar dinamiğinin, uçaklardaki kuvvetlerin ve momentlerin hesaplanması, boru hatları boyunca petrolün Kütle akış hızının belirlenmesi, hava durumu modellerinin tahmin edilmesi, uzaydaki bulutsuların anlaşılması ve fisyon silahı patlamasının modellenmesi dahil olmak üzere geniş bir uygulama yelpazesi vardır.

<span class="mw-page-title-main">Anatoli Fomenko</span> Rus matematikçi

Anatoli Timofeyeviç Fomenko, bir Sovyet ve Rus komplo teorisyeni, matematikçi, Moskova Devlet Üniversitesi'nde profesör, iyi bir topolog olarak bilinir ve Rusya Bilimler Akademisi üyesidir. Rus-Sovyet yazar ve mason Nikolay Aleksandroviç Morozov'un eserlerine dayanan Yeni Kronoloji olarak bilinen bir teorinin yazarıdır. Aynı zamanda Rusya Doğa Bilimleri Akademisi (1991) üyesidir. 1996 yılında matematik dalında Rusya'nın devlet ödülünü almıştır.

<span class="mw-page-title-main">Diferansiyel geometri</span>

Diferansiyel geometri türevin tanımlı olduğu Riemann manifoldlarının özellikleriyle uğraşan matematiğin bir alt disiplinidir. Başka bir deyişle, bu manifoldlar üzerindeki metrik kavramlarla uğraşır. Eğrilik, eğriler için burulma ve yüzeyler için değişik eğrilikler, araştırılan özellikler arasındadır.

<span class="mw-page-title-main">Sayısal analiz</span>

Sayısal analiz, diğer adıyla nümerik analiz veya sayısal çözümleme, matematiksel analiz problemlerinin yaklaşık çözümlerinde kullanılan algoritmaları inceler. Bu nedenle birçok mühendislik dalı ve doğa bilimlerinde önem arz eden sayısal analiz, bilimsel hesaplama bilimi olarak da kabul edilebilir. Bilgisayarın işlem kapasitesinin artması ile gündelik hayatta ortaya çıkan birçok sistemin matematiksel modellenmesi mümkün olmuş ve sayısal analiz algoritmaları burada ön plana çıkmıştır. 21. yüzyıldan itibaren bilimsel hesaplama yöntemleri mühendislik ve doğa bilimleri ile sınırlı kalmamış ve sosyal bilimler ile işletme gibi alanları da etkilemiştir. Sayısal analizin alt başlıklarına adi diferansiyel denklemlerin yaklaşık çözümleri ve özellikle veri biliminde önem taşıyan sayısal lineer cebir ile optimizasyon örnek gösterilebilir.

Kombinatorik, genellikle sonlu soyut nesneleri konu alan soyut matematik dalıdır. Dalla ilgilenen matematikçilere kombinatoryalist veya kombinatorist denir. Matematiğin, cebir, olasılık kuramı, ergodik teori ve geometri gibi farklı dallarıyla da ilgili olan kombinatorik ayrıca bilgisayar bilimi ve istatistiksel fizik gibi dallarda uygulanmıştır. Kombinatorik dahilindeki konulardan bazıları; belirli kriterleri karşılayan nesnelerin "sayılması", kriterlerin ne zaman karşılanmış olacağına karar vermek, kriterleri karşılayan nesnelerin inşa edilmesi ve analiz edilmesi, "en büyük", "en küçük" veya "optimal" nesneleri bulmak ve bu nesnelerin sahip olabileceği cebirsel yapıları bulmaktır.

Matematiksel fizik, matematik ve fizik arasındaki alakayla ilgilinen bilimsel disiplindir. Matematiksel fiziğin neyi içerip içermediği ile ilgili tam bir mutabakat yoktur. Ancak Journal of Mathematical Physics konuyla ilgili bir tanım yapar: Matematiğin fiziksel sorunlara uygulanması ve fiziksel kuramlar için matematiksel yöntemlerin uygunluğunun geliştirilmesi.

<span class="mw-page-title-main">Tensör</span> skaler, vektör, covector ve tensörlerin bazı kombinasyonlarında çok çizgili harita

Matematikte, tensör, çok boyutlu verinin simgelenebildiği geometrik bir nesnedir. Skaler denilen yönsüz nicel büyüklükler, vektör denilen yönlü büyüklükler ve matris denilen iki boyutlu nesneler birer tensördür. Tensör, tüm bu nesnelerin genelleştirilmiş halidir ve çok boyutlu veri kümeleri için kullanılır. Nesnenin kaç boyutla ifade edildiğine de tensörün derecesi denilir. Bir skalerin derecesi sıfır, bir vektörün bir, bir matrisin ise ikidir. Tensörler üç ve üzeri dereceye sahip olabilir.

<span class="mw-page-title-main">Lenart Küresi</span>

Lenart küresi, Öklityen olmayan geometriler için özellikle de küresel geometri, küresel trigonometri ve projektif geometri için bir eğitim ve öğretim modelidir. Lenart küresi, küre üzerindeki çokgenleri ve kenar-açı arasındaki ilişkileri görselleştirmek için bir “küresel yazı tahtası” olarak adlandırılır. Küre, The Geometer’s Sketchpad, GeoGebra ve Spherical Easel gibi görselleştirme yazılımları gibi kullanılır.. Lenart küresinin egitim uygulamaları Geodesy, GIS, astronomi, geometri, ışın izleme (grafik), perspektif (grafiksel), trigonometri ve göksel navigasyonu içerir.

Tarih boyunca matematiğin konu çeşitliliği ve derinliği artmaktadır, matematiği kavrama, birçok konuyu matematiğin daha genel alanlarına göre sınıflandırma ve düzenleme için bir sistem gerektirir. Bir dizi farklı sınıflandırma şeması ortaya çıkmıştır ve bazı benzerlikleri paylaşsalar da, kısmen hizmet ettikleri farklı amaçlara bağlı olarak farklılıkları vardır. Ek olarak, matematik geliştirilmeye devam ettikçe, bu sınıflandırma şemaları da yeni oluşturulan alanları veya farklı alanlar arasında yeni keşfedilen bağlantıları dikkate alacak şekilde değişmelidir. Farklı alanlar arasındaki sınırı aşan, genellikle en aktif olan bazı konuların sınıflandırılması daha zor hale gelir.

<span class="mw-page-title-main">Vladimir Arnold</span> Sovyet-Rus matematikçi

Vladimir İgoreviç Arnold Sovyet-Rus matematikçi. En iyi entegre sistemlerin stabilitesi ile ilgili Kolmogorov-Arnold-Moser teoremi ile tanınmasına rağmen, dinamik sistem teorisi, cebir, felaket teorisi, topoloji, cebirsel geometri, sezgisel geometri, diferansiyel denklemler, klasik mekanik dahil olmak üzere birçok alanda önemli katkılarda bulunmuştur., Hidrodinamik ve tekillik teorisi, ADE sınıflandırma problemini ortaya çıkarmak da dahil olmak üzere, ilk ana sonucundan bu yana - 19 yaşında 1957'de Hilbert'in on üçüncü probleminin çözdü. İki yeni matematik dalı kurdu: KAM teorisi ve topolojik Galois teorisi öğrencisi Askold Hovanskiy ile).

Bu sayfa teoremlerin bir listesidir. Ayrıca bakınız:

<span class="mw-page-title-main">Jacques Hadamard</span> Fransız matematikçi (1865 – 1963)

Jacques Salomon Hadamard ForMemRS sayı teorisi, karmaşık analiz, diferansiyel geometri ve Kısmi diferansiyel denklemlere önemli katkılarda bulunan Fransız matematikçidir.

<span class="mw-page-title-main">Felix Klein</span> Alman matematikçi, Erlangen Programının yazarı (1849-1925)

Christian Felix Klein, grup teorisi, karmaşık analiz, Öklid dışı geometri ve geometri ile grup teorisi arasındaki ilişkiler üzerine yaptığı çalışmalarla tanınan Alman matematikçi ve matematik eğitimcisi. Klein'ın geometrileri temel simetri gruplarına göre sınıflandıran 1872 Erlangen programı, döneminin matematiğinin büyük kısmının etkili bir senteziydi.

<span class="mw-page-title-main">Élie Cartan</span> Fransız matematikçi (1869 – 1951)

Élie Joseph Cartan, ForMemRS Lie grupları, diferansiyel sistemler ve diferansiyel geometri teorisinde temel çalışmalar yapan etkili bir Fransız matematikçi. Ayrıca genel göreliliğe ve dolaylı olarak kuantum mekaniğine önemli katkılarda bulundu. Yirminci yüzyılın en büyük matematikçilerinden biri olarak kabul edilmektedir.

Matematikte, integral geometri, belirli bir uzayın simetri grubu altındaki geometrik uzay değişmezi üzerindeki ölçü teorisidir. Daha yakın zamanlarda, anlam, bir geometrik uzaydaki fonksiyon uzayından başka bir geometrik uzaydaki fonksiyon uzayına değişmeyen dönüşümlerin bir görünümünü içerecek şekilde genişletildi. Bu tür dönüşümler genellikle Radon dönüşümü ve genellemeleri gibi integral dönüşümlerin biçimini alır.

<span class="mw-page-title-main">Eduard Čech</span>

Eduard Čech Stračov'da doğmuş Çek bir matematikçi. Araştırma konuları arasında izdüşümsel diferansiyel geometri ve topoloji vardı. Özellikle (topolojide) Stone-Čech kompaktlaştırması olarak bilinen teknik ve Čech kohomolojisi kavramı ile tanınır. 1937'de Tychonoff teoreminin bir kanıtını yayınlayan ilk kişi oldu. Ayrıca Bir uzayın daha yüksek homotopi grupları fikrini ortaya attı.

Bu yazıda geometrik şekilleri analiz etmek ve işlemek için kullanılan şekil analizi türü anlatılmaktadır.

<span class="mw-page-title-main">Geometrinin ana hatları</span> Geometriye genel bir bakış ve konu rehberi̇

Geometri, şekil, boyut, şekillerin göreceli konumu ve uzayın özellikleri ile ilgili sorularla ilgilenen bir matematik dalıdır. Geometri, en eski matematiksel bilimlerden biridir.