İçeriğe atla

Ayrık Fourier dönüşümü

Ayrık Fourier Dönüşümü (İngilizceDFT, Discrete Fourier Transform), Fourier analizinde kullanılan özel bir Fourier dönüşümüdür.

Tanım

şeklinde bir dizi verilmiş olsun. Bu dizinin Ayrık Fourier dönüşümü

ve Ters Fourier dönüşümü ise

şeklindedir. Yukarıdaki eşitliklerde görünen aşağıdaki gibidir.

Ayrık Fourier dönüşümü ile elde edilen katsayıları karmaşık sayılardır. Ancak öğesi gerçeldir. Geri kalan karmaşık sayılar aşağıdaki bağıntıya göre birbirlerinin eşlenikleridir.

Ayrık zamanlı Fourier dönüşümü

Ayrık zamanlı Fourier dönüşümü (DTFT), ayrık zamanlı sinyal işleme algoritma ve sistemlerinin analizi, tasarımı, gerçekleştirilmesi ile doğrusal filtreleme, korelasyon analizi ve spektrum analizi gibi sinyal işleme uygulamalarında önemli bir rol oynar. DTFT’nin bu öneme sahip olmasının ardındaki temel neden DTFT’yi hesaplamakta kullanılan verimli algoritmaların varlığıdır.[1][2]

DTFT, Fourier dönüşümünün eşit aralıklı frekanslardaki örneklerine özdeştir. Sonuç olarak N-noktalı bir DTFT’nin hesaplanması Fourier dönüşümünün N örneğinin, N eşit aralıklı frekanslarla (w_k=2*pi*kn), z-düzlemindeki birim çember üzerinde N nokta ile hesaplanmasına karşılık gelir. Burada temel amaç N-noktalı DTFT’nin hesaplanması için verimli algoritmaların kullanılmasıdır. Bu algoritmalar ortak olarak hızlı Fourier dönüşümü (FFT) algoritmaları adını alır. En yüksek verimin elde edilebilmesi için FFT algoritmaları DTFT’nin N değerlerinin hepsini hesaplamalıdır.

Bir algoritmanın ya da gerçeklemenin karmaşıklığını ve verimini ölçmenin birçok yolu vardır. Bunun sonucundaki final değerlendirme hem mevcut teknolojiye hem de uygulamaya bağlıdır. Hesaplama karmaşıklığını ölçmek için aritmetik çarpma ve toplamaların sayısı kullanılacaktır.[1] Algoritmalar, genel amaçlı dijital bilgisayarlarda ya da özel amaçlı mikroişlemcilerde gerçekleştirildiklerinde hesaplama hızı, çarpma ve toplamaların sayısıyla doğrudan ilişkilidir.

Hızlı Fourier Dönüşümü (İngilizceFFT, Fast Fourier Transform), bir zaman domeni sinyalini eşdeğer frekans domeni sinyaline dönüştürmekte kullanılan DTFT (İngilizceDiscrete Fourier Transform - Ayrık Fourier Dönüşümü) tabanlı verimli bir algoritmadır. Bu bölümde çeşitli gerçek zamanlı FFT örnekleri gerçekleştirilecektir.

Hızlı Fourier Dönüşümü algoritması, Nkompleks noktalı bir data serisinin sonlu Fourier dönüşümünü yaklaşık Nlog2N işlemle hesaplayan bir metottur.[3] Algoritmanın gerçekten de büyüleyici bir tarihi vardır. Bu algoritma, 1965’te James Cooley ve John Tukey tarafından açıklandığında,[4] Fourier analizinin N^2 işlemle orantılı olan ve orantı faktörünün trigonometrik fonksiyonların simetri özellikleri kullanılarak azaltılabileceğine inanan birçok kişi tarafından büyük ilgi topladı. O yıllarda N^2 işlemli metotları kullanan bilgisayarlar yüzlerce saatlik bir işlem süresine ihtiyaç duymaktaydı. Cooley ve Tukey’in makalesinin etkisiyle Rudnick, 1942’de Danielson ve Lanczos’un önerdiği bir metodu geliştirerek Nlog2N sayıda işlem yapan kendi bilgisayar programını tanımladı.

Cooley ve Tukey’in hızlı Fourier dönüşümü algoritması N kompozit (yani iki ya da daha fazla sayının çarpımı gibi) veya 2’nin bir kuvveti olmadığında bile uygulanabilir olmasından dolayı genel bir algoritmadır. Eskiden saatlerce süren hesaplamalar Cooley ve Tukey’in algoritması ile dakikalar içerisinde gerçekleştirilebilir bir hale gelmiştir.[4]

Trigonometrik fonksiyonların hem simetri hem de periyodiklik özelliğini kullanan hesaplama algoritmaları, yüksek hızlı dijital bilgisayarlar çağının çok daha öncesinde bilinmekteydi. O zamanlarda manüel hesaplamayı 2 kat dahi azaltacak yeni bir düzen bile literatürde yerini almaktaydı. Runge 1905’te ve daha önce bahsedildiği üzere Danielson ve Lanczos da 1942’de N^2 işlem yerine Nlog2N ile orantılı sayıda işlem yapan algoritmaları tanımlamışlardı. Fakat ta ki 1965’te Cooley ve Tukey ayrık Fourier dönüşümünü hesaplamak için algoritmalarını yayınlamadan önce oldukça azaltılmış hesap yükü elde etme olasılığı görmezlikten gelinmişti. Bu makale, ayrık Fourier dönüşümünün sinyal işlemedeki uygulamalarını ve oldukça verimli hesaplama algoritmalarının bulunmasını tetikledi.

DTFT, zaman alanı dizisini eş değer frekans alanı dizisine çevirir. Ters DTFT ise geri işlemi gerçekleştirerek frekans alanı dizisinden eş değer zaman alanı sinyali geri elde eder. FFT, DTFT’ye göre daha az hesap yapmasına karşın oldukça verimli bir algoritma tekniğidir. FFT DSP’de frekans spektrum analizi için en yaygın olarak kullanılan operasyondur. FFT algoritmaları, uzunluğundaki bir dizinin ayrık Fourier dönüşümü hesabını daha küçük DTFT’lere ayrıştırma temel prensibine dayanmaktadır.[1] Bu temel prensip çeşitli farklı algoritmalarla gerçekleştirildiğinde hesaplama hızında kayda değer bir artış elde edilmektedir. Bir FFT’yi hesaplamak için iki farklı prosedür uygulanmaktadır. Bunlar; x[n] zaman dizisinin daha küçük alt dizilere bölündüğü zamanda desimasyon (örnek seyreltme) ve ayrık Fourier dönüşümü dizisi katsayıları X[k]’nın daha küçük alt dizilere ayrıştırıldığı frekansta desimasyon algoritmalarıdır. FFT’in Ayrık Kosinüs dönüşümü (İngilizceDCT, Discrete Cosine Transform), Goertzel algoritması ve Hızlı Hartley dönüşümü (İngilizceFast Hartley Transform) gibi birkaç varyasyonu da kullanılmaktadır. Özellikle son yıllarda DCT, sağladığı yüksek sıkıştırma oranı sayesinde gerçek zamanlı uygulamalarda tercih edilmektedir.[5]

Kaynakça

  1. ^ a b c Oppenheim A. V., Schafer, R.W., Discrete-Time Signal Processing, 2nd Ed., Prentice-Hall, Inc., Upper Saddle River, NJ, 1999
  2. ^ Proakis, J.G., Manolakis, D.G., Digital Signal Processing, Principles, Algorithms and Applications, 4th Ed., Prentice-Hall, Upper Saddle River, NJ, 2007
  3. ^ Cooley, J.W., Lewis, P.A.W., Welch, P.D., Historical Notes on the Fast Fourier Transform, IEEE Trans. Audio Electroacoustics, Vol. AU-15,pp. 76-79, June 1967
  4. ^ a b Cooley, J.W., Tukey, J.W., An Algorithm for the Machine Computation of Complex Fourier Series, Mathematics of Computation, Vol. 19,pp. 297-301, April 1965
  5. ^ Gonzalez, R.C., Woods R.E., Digital Image Processing, 2nd Ed., Prentice Hall, Upper Saddle River, NJ, 2002

Ayrıca bakınız

Dış bağlantılar

İlgili Araştırma Makaleleri

Sinyaller ve sistemler kavram ve teorisi diğer birçok mühendislik ve bilim dallarıyla birlikte, elektrik ve elektronik mühendisliğinin hemen her alanında ve Biyomedikal mühendisliğinin tıbbi cihazlar ve biyoelektrik gibi elektrikle ilgilenen alt disiplinlerinde gerekli olup, haberleşme, EKG, EEG gibi tıbbi cihazlar, devreler ve sistemler ve kontrol sistemleri gibi alanlardaki ileri düzeyde çalışmaların matematiksel temelini oluşturur.

Aşağıdaki tarihsel sıralama genel olarak algoritmaların ilk kökenlerinden başlayarak gelişimlerini ana hatlarıyla gösterir.

Fourier dönüşümü, fizik, mühendislik ve matematikte, bir fonksiyonu, içerdiği frekansların belirtildiği bir biçime dönüştüren bir integral dönüşümüdür. Dönüşümün çıktısı, frekansa bağlı karmaşık değerli bir fonksiyondur. "Fourier dönüşümü" terimi, hem bu karmaşık değerli fonksiyon için hem de buna karşılık gelen matematiksel operasyon için kullanılmaktadır. Bu ayrımın netleştirilmesi gerektiğinde, Fourier dönüşümü bazen orijinal fonksiyonun frekans uzayında temsili olarak adlandırılır. Fourier dönüşümü, bir müzik akorunun sesini, onu oluşturan tonlara ayrıştırmaya benzer.

<span class="mw-page-title-main">Titreşim</span>

Titreşim bir denge noktası etrafındaki mekanik salınımdır. Bu salınımlar bir sarkaçın hareketi gibi periyodik olabileceği gibi çakıllı bir yolda tekerleğin hareketi gibi rastgele de olabilir.

<span class="mw-page-title-main">Hızlı Fourier dönüşümü</span>

Hızlı Fourier dönüşümü bir dizinin ayrık Fourier dönüşümünü (DFT) ya da ters ayrık dönüşümünü hesaplayan bir algoritmadır. Fourier analizinde bir sinyal bulunduğu uzaydaki gösteriminden frekans uzayıki gösterimine ya da tersine dönüştürülür. DFT'de ise ayrık veri dizileri farklı frekans öğelerine ayrılır. Bu operasyon her ne kadar birçok alanda kullanışlı olsa da, doğrudan formüllerle hesabı hızlı ve pratik değildir; bu nedenle DFT hesabı için FFT algoritmaları kullanılmaktadır.

<span class="mw-page-title-main">Fourier serisi</span>

Matematikte, Fourier serileri bir periyodik fonksiyonu basit dalgalı fonksiyonların toplamına çevirir.

<span class="mw-page-title-main">Frekans modülasyonu</span> frekans modülasyonu, İletişim teknolojisinde (yayıncılıkta) kullanılan bir modülasyon türü

Frekans modülasyonu, İletişim teknolojisinde (yayıncılıkta) kullanılan bir modülasyon türüdür. FM kısaltmasıyla gösterilir. Bu modülasyon türü 1933 yılında Amerikalı mühendis Edwin Howard Armstrong (1890-1954) tarafından geliştirilmiştir.

Z dönüşümü, matematikte ve sinyal işlemede bir dönüşüm. Zaman tanım kümesinde gerçel ve sanal bileşenleri olan herhangi bir ayrık işareti, frekans tanım kümesindeki biçimine dönüştürür.

Matematikte, harmonik analiz alanında, kesirli Fourier dönüşümü (FRFT) Fourier dönüşümüne genelleştirilecek doğrusal dönüşümlerin bir ailesidir. Bu nedenle, -zaman ve frekans- arasında bir ara etki alanı için bir işlev dönüştürebilir - Fourier dönüşünde n'in bir tam sayı olması gerekmez n'inci kuvvet dönüşümü olarak da düşünülebilir. Onun uygulamaları faz geri alma ve örüntü tanıma için,filtre tasarımı ve sinyal analizi arasında değişir.

Matematikte, özellikle soyut cebir ve uygulamalarında, ayrık logaritma, genel logaritmanın grup kuramındaki karşılığıdır. Genel olarak bakıldığında, loga(b) ifadesi, ax = b ifadesinin gerçel sayılar kümesi içindeki çözümlerine karşılık gelir. Benzer olarak, g ve h sonlu devirli grup G'nin elemanları olduğunda, gx = h ifadesinin çözümü olan x sonuçlarına h'nin g tabanındaki ayrık logaritması denir.

Bu matematikte dönüşümlerin bir listesidir.

Frekans bölgesi ya da frekans uzayı, matematiksel fonksiyon veya sinyallerin zaman yerine frekansa bağlı şekilde tanımlanıp analiz edilmesini ifade eden terimdir.

John Wilder Tukey ForMemRS 20. yüzyılın en ünlü Amerikalı istatistikçilerinden biridir. FFT algoritmasını ve kutu grafiğini geliştirmiştir. Ayrıca kendi adını taşıyan çoklu karşılaştırma testi Tukey Testi'ni ve Tukey'in Lambda dağılımını geliştirmiştir.

<span class="mw-page-title-main">Spektral yoğunluk</span>

Güç spektrumunun zaman serileri bu sinyale sebep olan frekans bileşenlerinin dağılımını tanımlar. Fourier analizine göre herhangi bir fiziksel sinyal, farklı frekanslara ayrışabilir ya da devamlı bir sıra boyunca frekans spektrumlarına dönüşebilir. Belirli bir sinyal veya herhangi bir sinyal çeşitlerinin istatistiksel ortalaması içerdiği frekans bileşenlerine göre analiz edilir.Buna da spektrum denir.

<span class="mw-page-title-main">Tek anahtarlı mesaj doğrulama kodu</span>

Tek anahtarlı mesaj doğrulama kodu, CBC-MAC algoritmasına benzer bir blok şifresinden oluşturulan bir mesaj kimlik doğrulama kodudur.

Matematikte Hankel dönüşümü, diğer adıyla Fourier–Bessel dönüşümü, herhangi bir f(r) fonksiyonunu sonsuz sayıda birinci tip Bessel fonksiyonlarının Jν(kr) oranlı toplamı olarak gösterir. Bu dönüşümde ortogonal temeli oluşturan Bessel fonksiyonlarının hepsi aynı ν mertebesindedir. Bu integral dönüşümü ilk kez matematikçi Hermann Hankel tarafından tasvir edilmiştir. Formülü ve ters dönüşümü sırasıyla şu şekilde verilebilir:

<span class="mw-page-title-main">Konvolüsyon</span>

Matematikte ve özellike fonksiyonel analizde konvolüsyon ya da evrişim, bir fonksiyonun şeklinin başka fonksiyon tarafından nasıl modifiye edildiğini gösteren bir integral işlemdir. Bir ile fonksiyonunun konvolüsyonu,

Matematik dünyasında, Parseval teoremi Fourier dönüşümünün bir üniter ifade olduğu sonucunu bize açıklar. Basit bir şekilde açıklarsak, bir fonksiyonun karesinin toplamı ile Fourier dönüşümün fonksiyonunun karesinin toplamının birbirine eşit olduğunu söyler. Teorem, Marc-Antoine Parseval'in 1799 yılındaki seriler hakkındaki bir teoreminin Fourier serilerine uygulanması sonucu ortaya çıkmıştır. Lord Rayleigh ile John William Strutt'tan sonra Rayleigh Enerji Teoremi veya Rayleigh Özdeşliği olarak da bilinir.

Harmonik analiz, bir fonksiyon ile onun frekanstaki temsili arasındaki bağlantıları araştırmakla ilgilenen matematik dalıdır. Frekans gösterimi, gerçek doğru üzerindeki fonksiyonlar için Fourier dönüşümü kullanılarak veya periyodik fonksiyonlar için Fourier serisi kullanılarak bulunur. Bazen harmonik analiz yerine kullanılsa da, bu dönüşümlerin diğer alanlara genelleştirilmesi genellikle Fourier analizi olarak adlandırılır. Harmonik Analiz sayı teorisi, temsil teorisi, sinyal işleme, kuantum mekaniği, gelgit analizi ve nörobilim gibi çok çeşitli bilimsel alanlardaki uygulamalarla geniş bir konu haline gelmiştir.

Matematikte, trigonometrik fonksiyon tabloları bir dizi alanda yararlıdır. Küçük hesap makinelerinin varlığından önce, trigonometrik tablolar navigasyon, bilim ve mühendislik için gerekliydi. Matematiksel tabloların hesaplanması önemli bir çalışma alanıydı ve bu da ilk mekanik hesaplama cihazlarının geliştirilmesine yol açtı.