İçeriğe atla

Aydınlanma şiddeti

Bir ışık kaynağı tarafından aydınlatılan birim yüzeye düşen ışık akısının miktarı. (Illuminance) Birimi MKS sisteminde lüks, CGS sisteminde ise phot'tur.

Işık akısı ve aydınlanma şiddeti

Işık kaynağından çevreye yayılan elektromanyetik gücün bir bölümü insan gözü tarafından algılanır. Işık akısı insan gözü tarafından algılanan bir güçtür. Akının birimi lumendir.

Işık akısının noktasal bir kaynaktan yayıldığı ve her yöne eşit dağıldığı varsayılırsa, bu akının kaynak çevresinde yer alan sanal bir kürenin iç yüzeyini aydınlattığı söylenebilir. Böyle bir kürenin yüzey alanı

ile verilir. Şu halde toplam ışık akısının birim yüzeye düşen miktarını bulmak için akı yüzey alanına bölünmelidir.

Burada E ile aydınlanma şiddeti, Φ ile ışık akısı ve r ile yarıçap, yani kaynak ile aydınlatılan yüzey arasındaki uzaklık gösterilmiştir.

Işık şiddeti ve aydınlanma şiddeti

Işık akısının bir steradyanlık katı açı içine düşen miktarına ışık şiddeti denilir.

Birimi candela (kandela) dır. (Kandela uluslararası SI birimler arasında yedi temel birimden biridir.)

ve

Bu ifadelerde I ışık şiddetidir.

Aydınlanma şiddeti kaynağın ışık şiddeti cinsinden;

Dünya'nın aydınlanma şiddeti ve insan gözü

Dünya'da öğle saatlerinde Güneş ışığının dik geldiği yerlerde aydınlanma 105 lüks dolaylarındadır.

İnsan gözü bundan 1000 defa daha yüksek aydınlık düzeylerini görebilir. (Ancak bu kadar parlak aydınlık düzeyleri göze zarar verebilir.) İnsanın görebildiği en düşük aydınlık ise 5•10−5 lüks dolaylarındadır. (Şüphesiz bu kadar düşük aydınlık düzeyini göz ancak belli bir uyum süresi sonunda görebilir.) Sağlıklı bir gözün görebildiği aydınlık farkları arasındaki 2 trilyon misline varan bu büyük farklılık, gözün uyum yeteneğinin bir sonucudur.

Dik olmayan yüzey

Yukarıda verilmiş olan ilişkiler ışık akısına dik olan yüzeyler için geçerlidir. Şayet yüzey akı geliş yönüne dik değilse

Burada θ ışık geliş yönüyle yüzey arasındaki açıdır.

Yüzey açıklık veya koyuluğu

Yüzeyin açık veya koyu görünmesi sadece birim yüzey üzerine düşen ışık akısına bağlı değildir. Bunda ayrıca yüzeyin yapı ve rengi de rol oynar. Koyu renkler yüzey üzerine düşen ışık akısını emerken, açık renkler yansıtır. Bu sebepten, açık renklerin koyu veya açık görülmeleri büyük ölçüde ışık akısına bağlıyken, siyah renkli yüzeylerin görüntüsü ışık akısından çok az bağlıdır.

Emitans

Işık kaynağı olan yüzeyler başka bir kaynak tarafından aydınlatılmaksızın kendi ışımasıyla aydınlanırlar. Bu gibi durumlarda da aydınlanma lüks birimiyle ölçülür. Ancak bu durumda nicelik ismi emitanstır.

Ayrıca bakınız

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Küresel koordinat sistemi</span>

Küresel koordinat sistemi, üç boyutlu uzayda nokta belirtmenin bir yoludur.

<span class="mw-page-title-main">Öz empedans</span>

Öz direnç (Empedans), maddenin kimyasal özelliğinden dolayı direncinin artması ya da azalmasına neden olan her maddeye özgü ayırt edici bir özelliktir. Farklı maddelerin empedansları aynı olabilir ama öz dirençleri aynı olamaz. R= Lq/Q dur. (Rezistif Direnç= Uzunluk*öz direnç/kesit, Alternatif akım'a karşı koyan zorluk olarak adlandırılır. İçinde kondansatör ve endüktans gibi zamanla değişen değerlere sahip olan elemanlar olan devrelerde direnç yerine öz direnç kullanılmaktadır. Öz direnç gerilim ve akımın sadece görünür genliğini açıklamakla kalmaz, ayrıca görünür fazını da açıklar. DA devrelerinde öz direnç ile direnç arasında hiçbir fark yoktur. Direnç sıfır faz açısına sahip öz direnç olarak adlandırılabilir.

<span class="mw-page-title-main">Elektrostatik</span> durağan elektrik yüklerinin incelenmesi

Elektrostatik, duran veya çok yavaş hareket eden elektrik yüklerini inceleyen bir bilim dalıdır.

Işık akısı bir fiziksel niceliktir ve insan gözünün algıladığı ışık gücünün miktarını ifade eder. Bu tariften de anlaşıldığı gibi, ışık akısı hem ışınım yapan kaynağın gücüne hem de insan gözünün özelliğine bağlıdır. SI birimi MKS sisteminde lumen dir.

Işık şiddeti bir ışık kaynağından birim katıaçı içerisinde yayılan ışık akısının bir ölçüsüdür. Işık akısı dendiği zaman, kaynaktan yayılan toplam akı, ışık şiddeti dendiği zaman ise bir steradyanlık katı açı içerisindeki akı kastedilir. MKS sistemi içerisinde ışık akısının birimi lumen, ışık şiddetinin birimi ise candela ya da Türkçe söylenişi ile kandeladır.

Işık, bir enerji çeşididir. Sabit kütleli sis­temlerde enerji yoktan var edilemez. Ancak bir biçimden diğerine dönüşebilir. Bu yüzden ışık, yalnızca enerjinin bir başka biçiminin dönüştürülmesiyle elde edilir. Elektrik enerjisi bir elektrik lambasında ya da deşarj tüpünde ışığa dönüştürülür. Kimyasal enerji ve ateşböceği gibi ışık saçan hayvanlarda ışığa dönüşür. Bu dönüşüm ters yönde de olabilir. Örneğin bir fotoelektrik hücrede ışık elektrik enerjisi üretir.

Işık gözün algıladığı elektromanyetik ışınıma verilen isimdir. Işık gücünün toplam elektromanyetik ışınım gücüne olan oranı ise Batı dillerinde efficacy olarak adlandırılır. Bu terim dilimize ışık verimliliği ya da ışık etkinliği olarak çevrilebilir. Elektromanyetik ışınımın kızılötesi ve morötesi kısımları aydınlatma için kullanılamaz. Bir kaynağın tam ışık verimi, elektromanyetik ışınımın insan gözü tarafından ne derece algılandığı ile ilgilidir.

<span class="mw-page-title-main">Kandela</span> ışık şiddeti birimi

Kandela, Işık şiddeti birimidir. Uluslararası SI sistemindeki 7 temel birimden biridir..

Lüks, 1 metre yarıçaplı bir kürenin merkezinde bulunan, 1 candela şiddetindeki ışık kaynağının 1 metrekarelik küre yüzeyinde oluşturduğu aydınlanma şiddetidir. Buna göre, 1 candela şiddetindeki bir ışık kaynağı "d" yarıçaplı bir kürenin merkezinde ise, küre yüzeyine düşen toplam ışık akısı : olarak bulunur.

Fraunhofer kırınımı ya da uzak-alan kırınımı dalganın uzak bölgelerde yayıldığı durumlarda uygulanan bir Kirchhoff-Fresnel kırınımı yaklaşımıdır.

Görüntü yük yöntemi, elektrostatikte kullanılan bir soru çözüm tekniğidir. İsimlendirmenin kökeni problemdeki sınır koşullarını bazı sanal yükler ile değiştirme yönteminden gelir.

Burada, en yaygın olarak kullanılan koordinat dönüşümü bazılarının bir listesi verilmiştir. Kısmi türevler alınırken çarpımın türevi gibi davranıldığı akıldan çıkarılmamalıdır. Bir örnek olarak fonksiyonunda üç çarpım vardır

<span class="mw-page-title-main">Elektrik akısı</span> elektrik alanının akısı

Elektrik akısı, elektrik alanının akısıdır. Elektrik akısı, bir yüzeyden geçen elektrik alan çizgilerinin sayısıyla doğru orantılıdır. Çok küçük bir dA alanındaki elektrik akısı şu şekilde hesaplanır:

Değişken değiştirme, İntegral, çarpanlara ayırma, denklemler, üslü denklemler, trigonometri ve diferansiyel denklemler başta olmak üzere matematiğin her alanında işlemi basitleştirmek için kullanılan matematiksel bir yöntemdir.

Lambert kosinüs yasasına göre, optikte, ideal dağınık bir şekilde yansıtılan yüzeyden veya ideal dağınık bir ısıtıcıdan gözlemlenen radyant yoğunluğu veya parlaklık yoğunluğu, gözlemcinin görüş yeri ve yer arasında kalan teta açısı ile doğru orantılıdır. Bu yasa ‘kosinüs emisyon yasası’ ya da ‘Lambert emisyon yasası’ olarak da bilinmektedir. Ayrıca, bu yasa 1760 yılında Johann Heinrich Lambert'ın ‘Photometria’ adı kitabı yayınlandıktan sonra isimlendirilmiştir.

<span class="mw-page-title-main">Küresel harmonikler</span>

Matematikte, küresel harmonikler Laplace denkleminin çözüm kümesinin açısal kısmıdır. Küresel koordinatların bir sistemi içinde küre yüzeyinde tanımlanır, Fourier serisi ise çember üzerinde tanımlanır. Laplace'ın küresel harmonikleri Pierre Simon de Laplace tarafından ilk 1782 yılında tanıtılan bir ortogonal sistemin küresel harmonik formlarının özel bir kümesidir. Küresel harmoniklerden birkaçının kökleri sağda gösterimlenmiştir. Küresel harmonikler pek çok yerde teorik önem taşımaktadır ve özellikle atomik yörünge elektron konfigürasyonları, yerçekimi alanları, geoitleri ve gezegen ve yıldızların manyetik alanlarının temsili ve kozmik mikrodalga arka plan radyasyonu karakterizasyonu hesaplanmasında kullanılan pratik uygulamaları vardır. Küresel harmonikler 3D Bilgisayar grafiklerinde, dolaylı aydınlatma ve 3D şekillerin tanınması gibi konularda geniş bir yelpazede özel bir rol oynamaktadır.

Bu bir Küresel harmonikler ortonormalize tablosudur ve Bu Condon-Shortley fazı l = 10 dereceye kadar sağlanır.Bazen bu formüllerin "Kartezyen" yorumu verilir.Bu varsayım x, y, z ve r Kartezyen-e-küresel koordinat dönüşümü yoluyla ve ye ilişkindir:

<span class="mw-page-title-main">Gauss yüzeyi</span>

Gauss yüzeyi, üç boyutlu uzayda içinden bir vektör alanın akısı geçen kapalı bir yüzeydir; genellikle elektrik alanı, yerçekim alanı ve manyetik alanı bulmak için kullanılır. rastgele seçilmiş bu kapalı yüzey S = ∂V Gauss yasasıyla ilişkili alan için conjuction olarak bir yüzey integrali sergilenerek kullanılır. Elektrostatik alanın kaynağı olarak elektrik yükünün miktarı ya da yerçekimi alanını kaynağı olarak yerçekimi ağırlığını kapalı alanda hesaplamak için kullanılır. Maddesel olması için, elektrik alan bu metinde, alanın en sık bilinen yüzey şekli olarak tanımlandırıldı. Gauss yüzeyleri genellikle, yüzey integralinin simetrisini basitçe hesaplayabilmek için dikkatle seçildi. Bir Gauss yüzeyi, yüzey üzerindeki her noktanın elektrik alan bileşenleri için, sabit bir normal vektörüne doğru seçilmiş ise, hesaplama zor bir integral gerektirmeyecektir.

Fizikte -ayrıca yer çekimi için Gauss akı teoremi olarak bilinen- Gauss yer çekimi yasası, Newton'un evrensel çekim yasasına temelde eşdeğer olan fizik yasasıdır. Her ne kadar Yer çekimi için Gauss yasası Newton'un yasasına denk olsa da, pek çok durumda Gauss yer çekimi yasası hesaplama yapmak için Newton'un yasasından çok daha basit ve uygundur.

Trigonometrik fonksiyonları tanımlamanın birkaç eşdeğer yolu vardır ve bunlar arasındaki trigonometrik özdeşliklerin kanıtları seçilen tanıma bağlıdır. En eski ve en temel tanımlar dik üçgenlerin geometrisine ve kenarları arasındaki orana dayanır. Bu makalede verilen kanıtlar bu tanımları kullanır ve dolayısıyla bir dik açıdan büyük olmayan negatif olmayan açılar için geçerlidir. Daha büyük ve negatif açılar için Trigonometrik fonksiyonlar bölümüne bakınız.