İçeriğe atla

Ayar bozonu

Temel taneciklerin standart modeli, ayar bozonları 4. sütunda kırmızı ile gösterilmiştir.

Ayar bozonları doğadaki 4 temel kuvvetin taşıyıcı parçacıklarına verilen genel addır. Fotonlar, gluonlar, W ve Z bozonları ve graviton olarak 4 farklı ayar bozonu vardır. Graviton hariç diğer bütün parçacıkların varlığı ve kütleleri tespit edilmiştir. Gravitonlar ise şu an için sadece teorik olarak bilinmektedir. Henüz gözlenememiştir.

İlgili Araştırma Makaleleri

Parçacık fiziğinde, bozonlar Bose-Einstein yoğunlaşmasına uyan parçacıklardır; Satyendra Nath Bose ve Einstein'a atfen isimlendirilmişlerdir. Fermi-Dirac istatistiklerine uyan fermiyonların tersine, farklı bozonlar aynı kuantum konumunu işgal eder. Böylece, aynı enerjiye sahip bozonlar uzayda aynı mekânı işgal edebilirler. Bu nedenle her ne kadar parçacık fiziğinde her iki kavram arasındaki ayrım kesin belirgin değilse de, fermiyonlar genelde madde ile bileşikken, bozonlar sıklıkla güç taşıyıcı parçacıklardır.

Temel etkileşimler veya Temel kuvvetler, fiziksel sistemlerde daha temel etkileşimlere indirgenemeyen etkileşimlerdir. Bilinen dört temel etkileşim vardır. Bunlar uzun mesafelerde etkileri olabilen kütleçekimsel, elektromanyetik etkileşimler ve atomaltı mesafelerde etkili olan güçlü nükleer ve zayıf nükleer etkileşimlerdir. Her biri bir alan dinamiği olarak anlaşılmalıdır. Bu dört etkileşim de matematiksel açıdan bir alan olarak modellenebilir. Kütleçekim, Einstein'ın genel görelilik kuramı tarafından tanımlanan uzay-zamanın eğriliğe atfedilirken diğer üçü ayrı kuantum alanlar olarak nitelendirilir ve etkileşimlerine Parçacık fiziğinin Standart Modeli tarafından tanımlanan temel parçacıklar aracılık eder.

Graviton, günümüze kadar varlığı kanıtlanamamış, kütleçekim kuvvetini ilettiği varsayılan sanal bir parçacıktır. Einstein'ın Genel Görelilik teorisinin önemli bir parçasıdır. Gravitonun varlığı etkileri sayesinde bilinmektedir fakat onu ölçmek ya da gözlemlemek şimdilik olanaksızdır.

<span class="mw-page-title-main">Parçacık fiziği</span>

Parçacık fiziği, maddeyi ve ışınımı oluşturan parçacıkların doğasını araştıran bir fizik dalıdır. Parçacık kelimesi birçok küçük nesneyi andırsa da, parçacık fiziği genellikle gözlemlenebilen, indirgenemez en küçük parçacıkları ve onların davranışlarını anlamak için gerekli temel etkileşimleri araştırır. Şu anki anlayışımıza göre bu temel parçacıklar, onların etkileşimlerini de açıklayan kuantum alanlarının uyarımlarıdırlar. Günümüzde, bu temel parçacıkları ve alanları dinamikleriyle birlikte açıklayan en etkin teori Standart Model olarak adlandırılmaktadır. Bu yüzden günümüz parçacık fiziği genellikle Standart Modeli ve onun olası uzantılarını inceler.

<span class="mw-page-title-main">Sicim teorisi</span> makro ve mikro kosmosun teorilerini birleştirmeye çalışan teori. (her şeyin teorisi)

Sicim teorisi, parçacık fiziğinde, kuantum mekaniği ile Einstein'in genel görelilik kuramını birleştiren bir teori. "Sicim" adı, klasik yaklaşımda "sıfır boyutlu noktalar" şeklinde tarif edilen atomaltı parçacıkların, aslında "bir boyutlu ve ipliksi varlıklar" olabileceği varsayımına dayanır.

<span class="mw-page-title-main">Atomaltı parçacık</span> Atomdan küçük, atomu da oluşturan maddeler.

Atomdan küçük, atomu da oluşturan maddeler. En çok bilinenleri, alt parçacıklardan (kuarklardan) oluşan proton ve nötron; lepton olan elektrondur. Yapısı tamamen keşfedilmemiş atomaltı parçacıklara örnek olarak foton (ışık), bozon, mezon, fermiyon, baryon ve graviton verilebilir.

<span class="mw-page-title-main">Standart Model</span>

Standart Model, gözlemlenen maddeyi oluşturan, şimdiye dek bulunmuş temel parçacıkları ve bunların etkileşmesinde önemli olan üç temel kuvveti açıklayan kuramdır.

Gluonlar kuarklar arasındaki güçlü etkileşimi sağlayan temel parçacıklardır. Bu etkileşim fotonların elektromanyetik etkileşmedeki rolüne benzer bir şekilde iki yüklü parçacık arasında momentum değişimini sağladığı düşüncesi ile benzerlik kurularak anlaşılabilir.

<span class="mw-page-title-main">Higgs bozonu</span> atom altı parçacık

Higgs bozonu; Peter Higgs, Gerald Guralnik, Richard Hagen, Tom Kibble, François Englert ve Robert Brout tarafından Standart Model'deki fermiyonlara kütle kazandırmak için varlığı öne sürülmüş, spini 0 (sıfır) olan parçacık. H veya h olarak kısaltılır. Aralık 2011'de o zamanlar iki ana deneyin sözcüleri birbirlerinden bağımsız sonuçlara dayanarak Higgs parçacığının 125 GeV/c2 değerinde bir kütleye sahip olabileceğini belirtti. Ayrıca yaptıkları açıklamada 115–130 GeV/c2 arası hariç Higgs'in bulunmayacağı diğer kütle aralıklarının önemli ölçüde elendiğini belirttiler. BHÇ'nin kesin bir sonuç için gerekli cevabı 2012'nin sonunda vereceği söylendi. 22 Haziran 2012'de CERN, yapılan deneylerin son durumu hakkında bir seminer verileceğini duyurdu. 28 Haziran 2012 civarlarında parçacığın bulunduğu yönünde açıklamaların geleceği medyada yayılmaya başladı fakat bunun "sadece güçlü bir sinyal" mi yoksa resmi bir keşif mi olacağı belirsizdi.

Parçacık fiziğinde şu anda bilinen ve kuramsal olan temel parçacıkları ve bu parçacıklarla oluşturulabilen bileşik parçacıkları içeren listedir.

W ve Z bozonları, zayıf etkileşime aracılık eden temel parçacıklardır. Bu bozonların keşfi parçacık fiziğinin Standart Modeli için büyük bir başarının müjdecisi oldu.

<span class="mw-page-title-main">Temel parçacık</span> Başka parçacıklardan oluştuğu bilinmeyen parçacıklar.

Temel parçacıklar, bilinen hiçbir alt yapısı olmayan parçacıklardır. Bu parçacıklar evreni oluşturan maddelerin temel yapıtaşıdır. Standart Model'de kuarklar, leptonlar ve ayar bozonları temel taneciklerdir.

<span class="mw-page-title-main">Carlo Rubbia</span> İtalyan fizikçi

Carlo Rubbia, İtalyan Cumhuriyeti Liyakat Nişanı, CERN'de W ve Z parçacıklarının keşfindeki büyük katkılarından dolayı 1984 Nobel Fizik Ödülünü, Simon van der Meer ile paylaşan İtalyan parçacık fizikçisi ve mucit.

Preonlar parçacık fiziğinde, kuarklar ve leptonların altparçacıkları olan nokta parçacıklardır. Terim 1974’te, Jogesh Pati ve Muhammed Abdüsselam tarafından oluşturulmuştur. Preon modellerine olan ilgi, 1980’lerde zirve noktasına ulaşmıştır ancak parçacık fiziği Standart Model'i, fiziğin kendisini en başarılı şekilde tanımlamaya devam ettiğinden ve lepton ile kuark kompozitleri hakkında hiçbir deneysel veri bulunmadığından dolayı bu ilgi azalmıştır.

<span class="mw-page-title-main">Higgs mekanizması</span>

Higgs mekanizması, parçacık fiziğinde ayar bozonlarının kütle özelliklerinin üretim mekanizmasını açıklaması açısından önemlidir.

Nötralino, süpersimetride varsayımsal bir parçacıktır. Fermiyon ve elektrik olarak nötr olan 4 nötralino vardır. En hafifleri tipik olarak dengelidir. Tipik olarak N͂1^0 ; N͂2^0, N͂3^0 ve N͂0^4 olarak adlandırılırlar. Bu 4 durum bino ve wino'nun karışımıdır. Genelde renkli süpersimetrik parçacıklardan oluşurlar.

F. Takayama and M. Yamaguchi, Phys. Lett. B 485 (2000)Genel görelilik ve Süpersimetri teorilerinin birleştirilmesi ile süper kütleçekimi oluşmuştur. Gravitino (G͂), graviton denilen varsayılmış parçacığın, süper simetrideki kalibretik Fermiyonudur. Bu parçacık, Kara madde için bir aday olarak önerilmiştir.

<span class="mw-page-title-main">Elektrozayıf etkileşim</span>

Parçacık fiziğinde elektrozayıf etkileşim, doğanın bilinen iki veya dört temel etkileşiminin birleşimin bir tanımıdır: elektromanyetizm ve zayıf etkileşim. Her gün düşük enerjilerde, bu iki kuvvet çok farklı oluşsa da, teori modelleri aynı kuvvetin iki farklı etkisi gibidir. Yukarıdaki birleştirme enerjisi, yaklaşık 100 GeV, tek bir elektrozayıf kuvvet oluşturabilir. Bu yüzden, eğer evren yeterince sıcaksa (Big Bang'den kısa bir sonra olan bir sıcaklık ortalama 1015 K), elektromanyetik kuvvet ve zayıf kuvvet birleşmiş bir elektrozayıf kuvvete dönüşür. Elektrozayıf dönem boyunca, zayıf kuvvet güçlü kuvvetten ayrılır. Kuark dönem boyunca, elektrozayıf kuvvet elektromanyetik ve zayıf kuvvetten ayrılır.

Parçacık fiziğinde, vektör bozon, spini 1' e eşit olan bozondur.Standart Modelde temel parçacık olarak değerlendirilen vektör bozonlar ayar bozonlarıdır.Ayar bozonları, elektromagnetizmanın fotonlarının, zayıf etkileşimlerin W ve Z bozonlarının temel etkileşimlerinin kuvvet taşıyıcılarıdır. Bazı bileşik parçacıklar vektör bozondur. Misal, bütün vektör mezonlar vektör bozondur.

<span class="mw-page-title-main">Gaugino</span>

Parçacık fiziğinin, süpersimetri teorilerinde, bir gaugino, süpersimetri ile birleştirilmiş ayar teorisi tarafından tahmin edildiği gibi, bir ayar alanının varsayımsal fermiyonik süpersimetrik alan kuantumudur(süperpartner). Gravitino hariç tüm gauginolar 1/2 dönüşe sahiptir.