İçeriğe atla

Augustin Louis Cauchy

Augustin-Louis Cauchy
Cauchy 1840 civarında. Jean Roller'ın bir tablosundan sonra Zéphirin Belliard'ın litografisi.
Doğum21 Ağustos 1789(1789-08-21)
Paris, Fransa
Ölüm23 Mayıs 1857 (67 yaşında)
Sceaux, Fransa
Defin yeriCimetière de Sceaux[1]
48°46′47″N 2°17′02″E / 48.77973°K 2.28380°D / 48.77973; 2.28380
MilliyetFransız
EğitimÉcole Centrale du Panthéon
Ecole Nationale des Ponts et Chaussées
École Polytechnique
Tanınma nedeniBkz. liste
Ödüller
  • Pour le Mérite for Sciences and Arts (1849)
  • Knight of the Legion of Honour (1819)
  • Grand prix des sciences mathématiques (1815)
  • Concours général
  • AAAS Fellow
  • Foreign Member of the Royal Society
Kariyeri
DalıMatematik, Fizik, Matematiksel analiz, Geometri, Mekanik
Çalıştığı kurumParis Üniversitesi
Turin Üniversitesi
Doktora öğrencileriFrancesco Faà di Bruno
Viktor Bunyakovsky
Mikhail Vasilyevich Ostrogradsky
Diğer önemli öğrencileriAuguste Comte
EtkilendikleriBernard Bolzano
İmza

Baron Augustin-Louis Cauchy FRS FRSE (/kˈʃ/;[2] Fransızca telaffuz: [oɡystɛ̃ lwi koʃi]; 21 Ağustos 1789 – 23 Mayıs 1857), matematiksel analiz ve sürekli ortam mekaniği de dahil olmak üzere matematiğin çeşitli dallarına öncü katkılarda bulunan bir Fransız matematikçi, mühendis ve fizikçiydi. Daha önceki yazarların cebrin genelliğinin buluşsal ilkesini reddederek, kalkülüs teoremlerini ifade eden ve kesin olarak kanıtlayan ilk kişilerden biriydi. Soyut cebirde karmaşık analiz ve permütasyon gruplarının çalışmasını neredeyse tek başına kurdu.

Derin bir matematikçi olan Cauchy, çağdaşları ve halefleri üzerinde büyük bir etkiye sahipti;[3] Hans Freudenthal şunları söyledi: "Cauchy'nin adı başka herhangi bir matematikçiden daha fazla kavram ve teoremlere verilmiştir (yalnızca esneklikte Cauchy için adlandırılan on altı kavram ve teorem vardır)."[4] Cauchy üretken bir yazardı; matematik ve matematiksel fizik alanlarında çeşitli konularda yaklaşık sekiz yüz araştırma makalesi ve beş tam ders kitabı yazdı.

Biyografisi

Gençliği ve eğitimi

Cauchy, Louis François Cauchy (1760-1848) ve Marie-Madeleine Desestre'nin oğluydu. Cauchy'nin iki erkek kardeşi vardı: 1847'de istinaf mahkemesinin bir bölümünün başkanı ve 1849'da bir temyiz mahkemesi yargıcı olan Alexandre Laurent Cauchy (1792-1857) ve aynı zamanda birkaç matematik eseri de yazan yayıncı Eugene François Cauchy (1802-1877).

Cauchy, 1818'de Aloise de Bure ile evlendi. Cauchy'nin eserlerinin çoğunu yayınlayan yayıncının yakın akrabasıydı. Marie Françoise Alicia (1819) ve Marie Mathilde (1823) adında iki kızı oldu.

Cauchy'nin babası, Ancien Régime'in Paris Polisi'nde yüksek bir memurdu, ancak Augustin-Louis'in doğmasından bir ay önce patlak veren Fransız Devrimi (14 Temmuz 1789) nedeniyle bu pozisyonunu kaybetti.[a] Cauchy ailesi, devrimden ve ardından gelen Terör Saltanatından (1793-94), Cauchy'nin ilk eğitimini babasından aldığı Arcueil'e kaçarak kurtuldu.[5] Robespierre'in (1794) idamından sonra, ailenin Paris'e dönmesi güvenliydi. Orada Louis-François Cauchy 1800'de[6] kendisine yeni bir bürokratik iş buldu ve hızla üst sıralara yükseldi. Napolyon Bonapart iktidara geldiğinde (1799), Louis-François Cauchy daha da terfi etti ve doğrudan (şimdi matematiksel fizik üzerine yaptığı çalışmalarla tanınan) Laplace'ın altında çalışan Senato Genel Sekreteri oldu. Ünlü matematikçi Lagrange, aynı zamanda Cauchy ailesinin bir arkadaşıydı.[3]

Lagrange'ın tavsiyesi üzerine Augustin-Louis, 1802 sonbaharında o zamanlar Paris'in en iyi ortaokulu olan École Centrale du Panthéon'a kaydoldu.[5] Müfredatın çoğu klasik dillerden oluşuyordu; parlak bir öğrenci olan genç ve hırslı Cauchy, Latince ve beşeri bilimlerde birçok ödül kazandı. Bu başarılara rağmen, Augustin-Louis bir mühendislik kariyeri seçti ve kendini École Polytechnique'e giriş sınavına hazırladı.

1805'te bu sınavda 293 adaydan ikinci oldu ve okula kabul edildi.[5] Bu okulun temel amaçlarından biri geleceğin sivil ve askeri mühendislerine üst düzey bir bilimsel ve matematiksel eğitim vermekti. Okulun askeri disiplin altında çalışması, genç ve dindar Cauchy'nin uyum sağlamada bazı sorunlara neden oldu. Yine de, 1807'de, 18 yaşında Polytechnique'i bitirdi ve École des Ponts et Chaussées'e (Köprüler ve Yollar Okulu) devam etti. İnşaat mühendisliğinden en yüksek dereceyle mezun oldu.

Mühendislik günleri

1810'da okulu bitirdikten sonra Cauchy, Napolyon'un bir deniz üssü inşa etmeyi amaçladığı Cherbourg'da genç bir mühendis olarak bir işi kabul etti. Burada Augustin-Louis üç yıl kaldı ve Ourcq Kanalı projesi ile Saint-Cloud Köprüsü projesine atandı ve Cherbourg Limanı'nda çalıştı.[5] Son derece yoğun bir yönetim işine sahip olmasına rağmen, Institut de France'ın Première Classe (First Class) adlı dergisine sunduğu üç matematiksel çalışmayı hazırlamak için yine de zaman buldu.[b] Cauchy'nin ilk iki çalışması (çokyüzlüler üzerine) kabul edildi; üçüncüsü (konik kesitlerin yönergeleri üzerine) reddedildi.

Eylül 1812'de, şimdi 23 yaşında olan Cauchy, fazla çalışmaktan hastalandıktan sonra Paris'e döndü.[5] Başkente dönmesinin bir başka nedeni de mühendislik mesleğine olan ilgisini kaybetmesi, matematiğin soyut güzelliğine giderek daha fazla ilgi duymasıydı; Paris'te matematikle ilgili bir pozisyon bulma şansı çok daha yüksek olurdu. Bu nedenle, 1813'te sağlığı düzeldiğinde, Cauchy Cherbourg'a dönmemeyi seçti.[5] Resmen mühendislik görevine devam etmesine rağmen, Denizcilik Bakanlığı'nın maaş bordrosundan İçişleri Bakanlığı'na transfer edildi. Sonraki üç yıl Augustin-Louis esas olarak ücretsiz hastalık iznindeydi ve zamanını oldukça verimli bir şekilde matematik üzerinde (simetrik fonksiyonlar, simetrik grup ve yüksek mertebeden cebirsel denklemler teorisi ile ilgili konularda) çalışarak geçirdi. Institut de France'ın Birinci Sınıfına girmeye çalıştı, ancak 1813 ve 1815 arasında üç farklı girişimde başarısız oldu. 1815'te Napolyon Waterloo'da yenildi ve yeni kurulan Bourbon kralı XVIII. Louis yeniden yapılanmayı eline aldı. Académie des Sciences, Mart 1816'da yeniden kuruldu; Lazare Carnot ve Gaspard Monge, siyasi nedenlerle bu Akademiden uzaklaştırıldı ve kral, bunlardan birinin yerine Cauchy'yi atadı. Cauchy'nin akranlarının tepkisi sertti; Akademi üyeliğinin kabul edilmesini bir rezalet olarak gördüler ve böylece Cauchy bilim çevrelerinde birçok düşman edindi.

Ecole Polytechnique'de profesörlük

Kasım 1815'te, Ecole Polytechnique'de doçent olan Louis Poinsot, sağlık nedenleriyle öğretim görevlerinden muaf tutulmak istedi. O zamana kadar Cauchy, profesörlüğü kesinlikle hak eden yükselen bir matematik yıldızıydı. O zamanki büyük başarılarından biri Fermat'nın çokgen sayı teoreminin ispatıydı. Bununla birlikte, Cauchy'nin Bourbonlara çok sadık olduğunun bilinmesi, şüphesiz Poinsot'un halefi olmasına da yardımcı oldu. Sonunda mühendislik işinden ayrıldı ve Ecole Polytechnique'in ikinci sınıf öğrencilerine matematik öğretmek için bir yıllık sözleşme yaptı. 1816'da, bu Bonapartist, dini olmayan okul yeniden düzenlendi ve birkaç liberal profesör kovuldu; aşırı sağcı Cauchy profesörlüğe terfi etti.

Cauchy 28 yaşındayken hala ailesiyle birlikte yaşıyordu. Babası, oğlunun evlenme vaktinin geldiğini düşündü; ona uygun bir gelin olarak kendisinden beş yaş küçük olan Aloïse de Bure'yi buldu. De Bure'nin ailesi matbaacı ve kitapçıydı ve Cauchy'nin eserlerinin çoğunu yayınladı.[7] Aloïse ve Augustin, 4 Nisan 1818'de Saint-Sulpice Kilisesi'nde büyük Roma Katolik ihtişamı ve töreni ile evlendiler. 1819'da çiftin ilk kızı Marie Françoise Alicia ve 1823'te ikinci ve son kızı Marie Mathilde doğdu.[8]

1830'a kadar süren muhafazakar siyasi iklim, Cauchy'ye mükemmel bir şekilde uyuyordu. 1824'te XVIII. Louis öldü ve yerine daha da muhafazakar kardeşi X. Charles geçti. Bu yıllarda Cauchy oldukça üretkendi ve birbiri ardına önemli matematiksel incelemeler yayınladı. Collège de France'da ve Faculté des sciences de Paris [fr] çapraz görevler aldı.

Sürgün zamanları

Temmuz 1830'da Fransa'da Temmuz Devrimi gerçekleşti. X. Charles ülkeden kaçtı ve yerine Bourbon olmayan kral Louis-Philippe (Orléans Handedanlığından) geçti. École Polytechnique'in üniformalı öğrencilerinin aktif rol aldığı ayaklanmalar, Cauchy'nin Paris'teki evinin yakınında şiddetlendi.

Bu olaylar Cauchy'nin hayatında bir dönüm noktası ve matematiksel üretkenliğinde bir kırılma noktası oldu. Hükûmetin düşüşüyle sarsılan ve iktidarı ele geçiren liberallere karşı derin bir nefret duyan Cauchy, ailesini geride bırakarak Paris'ten yurt dışına gitmek için ayrıldı.[9] Kısa bir süre İsviçre'deki Fribourg'da yeni rejime bağlılık yemini edip etmeyeceğine karar vermesi gereken yerde kaldı. Bunu yapmayı reddetti ve sonuç olarak, yemin gerektirmeyen Akademi üyeliği dışında Paris'teki tüm pozisyonlarını kaybetti. 1831'de Cauchy, İtalya'nın Torino kentine gitti ve orada bir süre sonra (Torino ve çevresindeki Piedmont bölgesini yöneten) Sardinya Kralı'nın kendisi için özel olarak oluşturulmuş bir teorik fizik kürsüsü teklifini kabul etti. 1832-1833 yılları arasında Torino'da öğretmenlik yaptı. 1831'de İsveç Kraliyet Bilimler Akademisi'nin yabancı bir üyesi ve ertesi yıl Amerikan Sanat ve Bilim Akademisi'nin Yabancı Onursal Üyesi seçildi.[10]

Ağustos 1833'te Cauchy, sürgündeki Veliaht Prens ve X. Charles'ın torunu olan on üç yaşındaki Bordeaux Dükü Henri d'Artois'in (1820-1883) bilim öğretmeni olmak için Prag'a gitmek için Torino'dan ayrıldı.[11] Ecole Polytechnique'in bir profesörü olarak Cauchy, en iyi öğrencilerinden sadece birkaçının ulaşabileceğini anlama düzeylerini temel alan ve ayrılan zamanını çok fazla materyalle dolduran, kötü şöhretli bir öğretim görevlisiydi. Genç Dük'ün ne matematik ne de bilim için ne zevki ne de yeteneği vardı, bu yüzden öğrenci ve öğretmen mükemmel bir uyumsuzluktu. Cauchy görevini çok ciddiye almasına rağmen, bunu büyük bir acemilikle ve Dük üzerinde şaşırtıcı bir otorite eksikliğiyle yaptı.

Cauchy, inşaat mühendisliği günlerinde kısa bir süreliğine Paris'teki birkaç kanalizasyonun onarımından sorumluydu ve bunu öğrencisine söyleme hatasına düştü; Büyük bir kötülükle genç Dük, Bay Cauchy'nin kariyerine Paris'in lağımlarında başladığını söyleyerek devam etti. Eğitmenlik rolü, Eylül 1838'de Dük on sekiz yaşına gelene kadar sürdü.[9] Cauchy bu beş yıl boyunca neredeyse hiç araştırma yapmadı, Dük ömür boyu matematikten hoşlanmadı. Bu bölümden elde edilen tek iyi şey, Cauchy'nin baron unvanına terfi etmesiydi, bu unvan Cauchy'nin büyük bir mağaza oluşturduğu bir unvandı. 1834'te karısı ve iki kızı Prag'a taşındı ve Cauchy, dört yıllık sürgünden sonra nihayet ailesiyle tekrar bir araya geldi.

Son yılları

Cauchy, 1838'in sonlarında Paris'e ve Bilimler Akademisi'ndeki görevine geri döndü.[9] Yine de bağlılık yemini etmeyi reddettiği için öğretim pozisyonlarını geri alamadı.

Sonraki yaşlarında Cauchy

Ağustos 1839'da Bureau des Longitudes'da bir boşluk belirdi. Bu Büro, Akademi'ye biraz benziyordu; örneğin, üyelerini seçme hakkına sahipti. Ayrıca, Büro üyelerinin resmi olarak Akademisyenlerin aksine yemin etmek zorunda olmalarına rağmen, bağlılık yeminini "unutabileceklerine" inanılıyordu. Bureau des Longitudes, enlem güneşin konumundan kolayca belirlenebildiğinden, denizdeki konumu - esas olarak boylamsal koordinat - belirleme problemini çözmek için 1795'te kurulmuş bir organizasyondu. Denizdeki konumun en iyi astronomik gözlemlerle belirleneceği düşünüldüğünden, Büro astronomik bilimler akademisine benzeyen bir organizasyona dönüştü.

Kasım 1839'da Cauchy Büro'ya seçildi ve yemin meselesinden kolayca vazgeçilmeyeceğini hemen anladı. Kral, yemini olmadan onun seçilmesini onaylamayı reddetti. Dört yıl boyunca Cauchy seçilme konumundaydı ama onaylanmadı; buna göre, Büronun resmi bir üyesi değildi, ödeme almadı, toplantılara katılamadı ve bildiri sunamadı. Yine de Cauchy yemin etmeyi reddetti; ancak, araştırmasını gök mekaniğine yönlendirecek kadar sadık hissediyordu. 1840 yılında Akademi'ye bu konuda bir düzine bildiri sundu. Ayrıca, 1727'de John Colson tarafından İngiltere'de sunulan bir yenilik olan sayıların işaretli basamak gösterimini tanımladı ve resimledi. Büro'nun kahrolası üyeliği, Cauchy'nin nihayet Poinsot ile değiştirildiği 1843'ün sonuna kadar sürdü.

On dokuzuncu yüzyıl boyunca Fransız eğitim sistemi, kilise ve devletin ayrılması konusunda mücadele etti. Kamu eğitim sisteminin kontrolünü kaybettikten sonra, Katolik Kilisesi kendi eğitim dalını kurmaya çalıştı ve Cauchy'de sadık ve şanlı bir müttefik buldu. Prestijini ve bilgisini, Paris'te Cizvitler tarafından yönetilen bir okul olan École Normale Écclésiastique'e, kolejleri için öğretmen yetiştirmek için ödünç verdi. Ayrıca Institut Catholique'in kuruluşunda yer aldı. Bu enstitünün amacı, Fransa'da Katolik üniversite eğitiminin yokluğunun etkilerine karşı koymaktı. Bu faaliyetler, Cauchy'yi, genel olarak Fransız Devrimi'nin Aydınlanma ideallerini destekleyen meslektaşları arasında popüler hale getirmedi. 1843'te Collège de France'da bir matematik kürsüsü boşaldığında, Cauchy bunun için başvurdu, ancak 45 oydan sadece üçünü aldı.

1848 yılı tüm Avrupa'da devrim yılıydı; Fransa'dan başlayarak birçok ülkede devrimler patlak verdi. XVI. Louis'nin kaderini paylaşmaktan korkan Kral Louis-Philippe, İngiltere'ye kaçtı. Bağlılık yemini kaldırıldı ve akademik bir atamaya giden yol sonunda Cauchy için açıktı. 1 Mart 1849'da Faculté de Sciences'a matematiksel astronomi profesörü olarak geri döndü. 1848 yılı boyunca siyasi kargaşadan sonra Fransa, Napolyon Bonapart'ın yeğeni ve Napolyon'un Hollanda'nın ilk kralı olarak atanan kardeşinin oğlu Louis Napolyon Bonapart'ın başkanlığında bir Cumhuriyet olmayı seçti. Kısa süre sonra (1852 başlarında) Başkan kendini Fransa İmparatoru yaptı ve III. Napolyon adını aldı.

Beklenmedik bir şekilde, bürokratik çevrelerde, üniversite profesörleri de dahil olmak üzere tüm devlet görevlilerinden tekrar sadakat yemini talep etmenin faydalı olacağı fikri ortaya çıktı. Bu kez bir kabine bakanı, İmparatoru Cauchy'yi yeminden muaf tutmaya ikna edebildi. Cauchy, 67 yaşında ölümüne kadar üniversitede profesör olarak kaldı. Son ayini[c] aldı ve 23 Mayıs 1857'de sabaha karşı saat 4'te bronşiyal bir hastalıktan öldü.[9] 

Adı Eyfel Kulesi'ne yazılan 72 isimden biridir.

Çalışmaları

Erken dönem çalışmaları

Cauchy'nin dehası, 1805'te keşfettiği Apollonius probleminin basit çözümünde (verilen üç çembere dokunan bir çemberi tasvir ederek), 1811'de çokyüzlüler hakkındaki Euler formülünü genelleştirmesinde ve diğer birkaç zarif problemde gösterildi. Daha da önemlisi, 1816'da Fransız Bilimler Akademisi'nin Grand Prix'sini alan dalga yayılımı üzerine anılarıdır. Cauchy'nin yazıları, yakınsama kavramını geliştirdiği ve q-serisi için temel formüllerin çoğunu keşfettiği seri teorisi dahil olmak üzere dikkate değer konuları kapsıyordu. Sayılar ve karmaşık miktarlar teorisinde, karmaşık sayıları gerçek sayı çiftleri olarak tanımlayan ilk kişi oldu. Ayrıca gruplar ve ikameler teorisi, fonksiyonlar teorisi, diferansiyel denklemler ve determinantlar üzerine yazdı.[3]

Dalga teorisi, mekanik, elastikiyet

Işık teorisinde Fresnel'in dalga teorisi ve ışığın dağılımı ve polarizasyonu üzerinde çalıştı. Ayrıca, maddenin sürekliliği ilkesinin yerine geometrik yer değiştirmelerin sürekliliği kavramını koyarak mekanik araştırmalarına katkıda bulundu.[12] Çubukların ve elastik zarların dengesi ve elastik ortamlardaki dalgalar üzerine yazdı. Şimdi Cauchy stres tensörü olarak bilinen 3×3 simetrik bir sayı matrisi tanıttı.[13] Elastikiyet konusunda, stres teorisini ortaya attı ve sonuçları neredeyse Siméon Poisson'unkiler kadar değerliydi.[3]

Sayı teorisi

Diğer önemli katkılar, Fermat çokgen sayı teoremini ilk kanıtlayan kişi olmayı içerir.

Karmaşık fonksiyonlar

Cauchy, karmaşık fonksiyon teorisini tek başına geliştirmesiyle ünlüdür. Şimdi Cauchy integral teoremi olarak bilinen Cauchy tarafından kanıtlanan ilk temel teorem şuydu:

burada f(z), Karmaşık düzlemde yer alan, kendisiyle kesişmeyen kapalı C eğrisi (kontur) üzerinde ve içinde karmaşık değerli holomorf bir fonksiyondur. Kontur integrali C konturu boyunca alınır. Bu teoremin temelleri, 24 yaşındaki Cauchy'nin 11 Ağustos 1814'te Académie des Sciences'a (o zamanlar hala "Enstitünün Birinci Sınıfı" olarak anılır) sunduğu bir makalede bulunabilir. Teorem tam olarak 1825'te verildi.[14] 1825 makalesi, birçok kişi tarafından, Cauchy'nin matematiğe en önemli katkısı olarak görülüyor.[15]

1826'da Cauchy, bir fonksiyonun kalıntısının resmi bir tanımını yaptı.[16] Bu kavram, kutupları —yalıtılmış tekillikler, yani bir fonksiyonun pozitif veya negatif sonsuza gittiği noktalar— olan fonksiyonlarla ilgilidir. Karmaşık değerli fonksiyon f(z) bir tekillik a komşuluğunda aşağıdaki gibi genişletilebilirse;

burada φ(z) analitik olduğunda (yani, tekillikler olmadan iyi-huylu durumda), o zaman f’nin a noktasında n mertebesinde bir kutba sahip olduğu söylenir. Eğer n = 1 ise kutup basit olarak adlandırılır. B1 katsayısı, Cauchy tarafından a’daki f fonksiyonunun kalıntısı olarak adlandırılır. f a’da tekil değilse, o zaman f’nin kalıntısı a’da sıfırdır. Açıkça kalıntı, aşağıdakine eşit basit bir kutup durumundadır,

burada B1 kalıntının modern gösterimi ile değiştirilmiştir.

1831'de Torino'dayken Cauchy, Torino Bilimler Akademisi'ne iki makale sundu. İlkinde[17], şimdi Cauchy integral formülü olarak bilinen formülü önerdi,

burada f(z), C üzerinde ve C konturu ile sınırlanan bölge içinde analitiktir ve a karmaşık sayısı bu bölgede bir yerdedir. Kontur integrali saat yönünün tersine alınır. Açıkça, integralin z = a’da basit bir kutbu vardır. İkinci makalesinde,[18] kalıntı teoremini sundu,

burada toplam f(z)'nin tüm n kutbu üzerinde ve C konturu içindedir. Cauchy'nin bu sonuçları, bugün fizikçilere ve elektrik mühendislerine öğretildiği gibi hala karmaşık fonksiyon teorisinin çekirdeğini oluşturur. Oldukça uzun bir süre, Cauchy'nin çağdaşları onun teorisini çok karmaşık olduğuna inanarak görmezden geldiler. Sadece 1840'larda, Pierre Alphonse Laurent'in Cauchy'nin yanı sıra konuyla ilgili çalışan ilk matematikçi olması ve önemli bir katkı (1843'te yayınlanan Laurent serisi) sağlamasıyla, teori karşılık bulmaya başladı.

Cours d'Analyse

Cauchy tarafından yazılan bir ders kitabının başlık sayfası.

Cours d'Analyse adlı kitabında Cauchy, analizde kesinliğin önemini vurguladı. Bu durumda kesinlik (İngilizcerigor) Cebrin genelliği ilkesinin (Euler ve Lagrange gibi daha önceki yazarların yaptığı gibi) reddedilmesi ve onun yerine geometri ve sonsuz küçüklerin getirilmesi anlamına geliyordu.[19] Judith Grabiner, Cauchy'nin "tüm Avrupa'ya kesin analizler öğreten adam" olduğunu yazdı. (Grabiner 1981) Kitap, Kitap, eşitsizliklerin ve argümanlarının Kalkülus'a tanıtıldığı ilk yer olarak sıklıkla belirtilmektedir. Burada Cauchy sürekliliği şu şekilde tanımlamıştır: Eğer verilen limitler arasında değişkendeki sonsuz küçük bir artış her zaman fonksiyonun kendisinde sonsuz küçük bir artış üretiyorsa f(x) fonksiyonu verilen limitler arasında x'e göre süreklidir.

M. Barany, École'un Cauchy'nin daha iyi yargısına karşı sonsuz küçük yöntemlerin dahil edilmesini zorunlu kıldığını iddia ediyor (Barany 2011). Gilain, 1825'te müfredatın Analyze Algébrique’e ayrılan kısmı azaltıldığında, Cauchy'nin sürekli fonksiyonlar (ve dolayısıyla sonsuz küçükler) konusunu Diferansiyel Analiz'in başına yerleştirmede ısrar ettiğini belirtiyor (Gilain 1989). Laugwitz (1989) ve Benis-Sinaceur (1973), Cauchy'nin 1853'e kadar kendi araştırmalarında sonsuz küçükleri kullanmaya devam ettiğini belirtir.

Cauchy, sonsuz küçüklüğün açık bir tanımını sıfıra eğilimli bir dizi açısından verdi. Cauchy'nin "sonsuz küçük miktarlar" kavramı hakkında yazılmış, bunların olağan "epsilontik" tanımlardan veya Standart dışı analiz kavramlarına kadar her şeyden kaynaklandığını öne süren çok sayıda literatür yazılmıştır. Fikir birliği, Cauchy'nin kullandığı sonsuz küçük miktarların kesin anlamını netleştirmek için önemli fikirleri atladığı veya zımnen bıraktığı yönündedir. (Barany 2013)

Taylor teoremi

Taylor teoremini titizlikle kanıtlayan ve geri kalanın iyi bilinen formunu kuran ilk kişiydi.[3] École Polytechnique'deki öğrencileri için matematiksel analizin temel teoremlerini olabildiğince kesin bir şekilde geliştirdiği bir ders kitabı[20] yazdı (resme bakın). Bu kitapta, hala öğretilen biçimde bir limitin varlığı için gerekli ve yeterli koşulu verdi. Ayrıca Cauchy'nin mutlak yakınsama için iyi bilinen testi olan Cauchy yoğunlaşma testi bu kitaptan kaynaklanmaktadır. 1829'da ilk kez başka bir ders kitabında bir karmaşık değişkenin karmaşık bir fonksiyonunu tanımladı.[21] Bunlara rağmen, Cauchy'nin kendi araştırma makaleleri sıklıkla katı değil sezgisel yöntemler kullandı;[22] böylece onun teoremlerinden biri Abel tarafından bir "karşı-örneğe" maruz kaldı, daha sonra tek biçimli süreklilik (uniform continuity) kavramının getirilmesiyle sabitlendi.

Argüman ilkesi, kararlılık

Cauchy'nin ölümünden iki yıl önce, 1855'te yayınlanan bir makalede, biri karmaşık analiz üzerine birçok modern ders kitabında yer alan "Argüman ilkesi"ne benzeyen bazı teoremleri tartıştı. Modern kontrol teorisi ders kitaplarında, Cauchy argüman ilkesi, negatif geri beslemeli yükselteç ve negatif geri besleme kontrol sistemlerinin kararlılığını tahmin etmek için kullanılabilen Nyquist kararlılık kriterini türetmek için oldukça sık kullanılır. Böylece Cauchy'nin çalışması hem saf matematik hem de pratik mühendislik üzerinde güçlü bir etkiye sahiptir.

Yayınlanmış eserleri

Leçons sur le calcul différentiel, 1829

Cauchy çok üretkendi, makale sayısı bakımından Leonhard Euler'den sonra ikinci sıradaydı. Tüm yazılarını 27 büyük ciltte toplamak neredeyse bir yüzyıl sürdü:

Matematik bilimine yaptığı en büyük katkılar, tanıttığı kesin yöntemlerle kuşatılmıştır; bunlar esas olarak onun üç büyük risalesinde somutlaştırılmıştır:

Diğer eserleri şunlardır:

Siyaset ve dini inançlar

Augustin-Louis Cauchy, sadık bir kraliyet taraftarınn evinde büyüdü. Bu, babasının Fransız Devrimi sırasında ailesiyle birlikte Arcueil'e kaçmasına neden oldu. O dönemde oradaki yaşamları görünüşte zordu; Augustin-Louis'in babası Louis François, bu dönemde pirinç, ekmek ve krakerle yaşamaktan bahsetti. Louis François'nın Rouen'deki annesine yazdığı tarihsiz bir mektuptan bir paragraf şöyle diyor:[23]

Asla bir 12 pound (230 g)* ekmekten fazlasına sahip olmadık - ve bazen o bile yoktu. Bunu, bize ayrılan az miktarda sert kraker ve pirinçle destekliyoruz. Yoksa çok iyi anlaşıyoruz ki bu da önemli olan ve insanın az şeyle geçinebileceğini gösteriyor. Size şunu söylemeliyim ki, çocuklarımın babası için hala kendi topraklarımda yetiştirdiğim buğdaydan yapılmış biraz ince un var. Üç kilem vardı ve ayrıca birkaç kilo patates nişastası da var. Kar kadar beyaz ve özellikle çok küçük çocuklar için çok iyi. O da kendi arazimde yetiştirildi.[24]

Her halükarda, babasının sadık kraliyetçiliğini miras aldı ve bu nedenle X. Charles'ın devrilmesinden sonra herhangi bir hükûmete yemin etmeyi reddetti.

Aynı derecede sadık bir Katolikti ve Saint Vincent de Paul Derneği'nin bir üyesiydi.[25] Ayrıca İsa Cemiyeti ile bağlantıları vardı ve siyasi olarak akıllıca olmadığında Akademi'de onları savundu. İnancına duyduğu şevk, hastalığı sırasında Charles Hermite ile ilgilenmesine ve Hermite'in sadık bir Katolik olmasına yol açmış olabilir. Aynı zamanda Cauchy'ye İrlanda'nın Büyük Kıtlığı sırasında İrlandalılar adına tanrıya yalvarması için ilham verdi.

Kraliyetçiliği ve dini coşkusu da onu kavgacı yaptı, bu da meslektaşları ile zorluklara neden oldu. İnançları nedeniyle kendisine kötü davranıldığını hissetti, ancak muhalifleri, insanları dini konularda azarlayarak veya bastırıldıktan sonra Cizvitleri savunarak kasıtlı olarak kışkırttığını hissetti. Niels Henrik Abel ona "bağnaz bir Katolik"[26] dedi ve "çılgın olduğunu ve onun hakkında yapılabilecek hiçbir şey olmadığını" ekledi, ancak aynı zamanda onu bir matematikçi olarak övdü. Cauchy'nin görüşleri matematikçiler arasında pek popüler değildi ve Guglielmo Libri Carucci dalla Sommaja ondan önce matematik başkanlığına getirildiğinde, kendisi ve diğerleri, görüşlerinin sebep olduğunu hissettiler. Libri kitap çalmakla suçlandığında yerine Cauchy yerine Joseph Liouville geçti, bu da Liouville ve Cauchy arasında bir sürtüşmeye neden oldu. Siyasi imalarla ilgili bir başka anlaşmazlık, Jean-Marie Constant Duhamel ve esnek olmayan şoklar iddiasıyla ilgiliydi. Daha sonra Jean-Victor Poncelet tarafından Cauchy'nin hatalı olduğu gösterildi.

Ayrıca bakınız

Kaynakça

Notlar

  1. ^ Babasının görevden alınması bazen Cauchy'nin tüm hayatı boyunca hissettiği derin Fransız Devrimi nefretinin nedeni olarak görülür.
  2. ^ Devrim yıllarında Fransız Académie des Sciences (Fransız Bilimler Akademisi), Institut de France'ın "Birinci Sınıfı (First Class)" olarak biliniyordu.
  3. ^ "Last rites" veya "Commendation of the dying" olarak bilinen ölmekte olan birinin vücuduna rahibin kutsal yağ sürdüğü katolik ayini

Alıntılar

  1. ^ Find a Grave'de Augustin Louis Cauchy
  2. ^ "Cauchy". Random House Webster's Unabridged Dictionary. 9 Nisan 2016 tarihinde kaynağından arşivlendi. 
  3. ^ a b c d e f Chisholm 1911.
  4. ^ Freudenthal 2008.
  5. ^ a b c d e f Bruno & Baker 2003, s. 66.
  6. ^ Bruno & Baker 2003, ss. 65–66.
  7. ^ Bradley & Sandifer 2010, s. 9.
  8. ^ Belhoste 1991, s. 134.
  9. ^ a b c d Bruno & Baker 2003, s. 67.
  10. ^ "Book of Members, 1780–2010: Chapter C" (PDF). American Academy of Arts and Sciences. 18 Haziran 2006 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 13 Eylül 2016. 
  11. ^ Bruno & Baker 2003, s. 68.
  12. ^ Kurrer, K.-E. (2018). The History of the Theory of Structures. Searching for Equilibrium. Berlin: Wiley. ss. 978-979. ISBN 978-3-433-03229-9. 
  13. ^ Cauchy 1827, s. 42, "De la pression ou tension dans un corps solide" [On pressure or tension in a solid body].
  14. ^ Cauchy 1825.
  15. ^ Miriam Drake, (Ed.) (2003), Encyclopedia of Library and Information Science, 3 (2. bas.), CRC Press, s. 1808, ISBN 9780824720797, 13 Ağustos 2021 tarihinde kaynağından arşivlendi, erişim tarihi: 13 Ağustos 2021 
  16. ^ Cauchy 1826, s. 11, "Sur un nouveau genre de calcul analogue au calcul infinitésimal" [On a new type of calculus analogous to the infinitesimal calculus].
  17. ^ Cauchy 1831.
  18. ^ Cauchy, Mémoire sur les rapports qui existent entre le calcul des Résidus et le calcul des Limites, et sur les avantages qu'offrent ces deux calculs dans la résolution des équations algébriques ou transcendantes Memorandum on the connections that exist between the residue calculus and the limit calculus, and on the advantages that these two calculi offer in solving algebraic and transcendental equations], presented to the Academy of Sciences of Turin, November 27, 1831.
  19. ^ Borovik & Katz 2012, ss. 245–276.
  20. ^ Cauchy 1821.
  21. ^ Cauchy 1829.
  22. ^ Kline 1982, s. 176.
  23. ^ Valson 1868, s. 13, Vol. 1.
  24. ^ Belhoste 1991, s. 3.
  25. ^ Brock 1908.
  26. ^ Bell 1986, s. 273.

Kaynakça

Konuyla ilgili yayınlar

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Adrien-Marie Legendre</span> Fransız matematikçi (1752 – 1833)

Adrien-Marie Legendre, Fransız matematikçidir.

<span class="mw-page-title-main">Henri Léon Lebesgue</span> Fransız matematikçi (1875 – 1941)

Henri Léon Lebesgue, 17. yüzyıl integral kavramının-bir eksen ile o eksen için tanımlanmış bir fonksiyonun eğrisi arasındaki alanı toplamak- bir genellemesi olan entegrasyon teorisi ile tanınan Fransız matematikçiydi. Teorisi ilk olarak 1902'de Nancy Üniversitesi'ndeki Intégrale, longueur, aire tezinde yayınlandı.

<span class="mw-page-title-main">Charles Hermite</span> Fransız matematikçi (1822 – 1901)

Charles Hermite sayı teorisi, ikinci dereceden formlar, değişmezlik teorisi, ortogonal polinomlar, eliptik fonksiyonlar ve cebir ile ilgili araştırma yapan Fransız bir matematikçiydi.

<span class="mw-page-title-main">Claude-Louis Navier</span>

Claude-Louis Navier,, , Fransız mühendis ve fizikçidir.

<span class="mw-page-title-main">Cauchy integral teoremi</span> Matematiksel analiz ile ilgili bir teorem

Matematiğin bir dalı olan karmaşık analizde, Augustin Louis Cauchy'nin ismine atfedilen Cauchy integral teoremi, karmaşık düzlemdeki holomorf fonksiyonların çizgi integralleri hakkında önemli bir teoremdir.

<span class="mw-page-title-main">Cauchy integral formülü</span>

Matematikte, Augustin Louis Cauchy'nin adıyla adlandırılan Cauchy integral formülü karmaşık analizde merkezi bir ifadedir. Bir disk üzerinde tanımlanmış holomorf bir fonksiyonun tamamen, fonksiyonun disk sınırındaki değerleri tarafından belirlendiğini ifade eder. Ayrıca, holomorf bir fonksiyonun tüm türevleri için formül elde etmekte de kullanılabilir. Cauchy formülünün analitik önemi karmaşık analizde "türev alma integral almaya denktir" ifade etmesidir: Bu yüzden karmaşık türevlilik, integral alma gibi, gerçel analizde olmayan düzgün limitler altında iyi davranma özelliğine sahiptir.

Matematiğin bir alt dalı olan karmaşık analizde, Liouville teoremi tam fonksiyonların sınırlılığıyla ilgili temel bir teoremdir.

<span class="mw-page-title-main">Kalıntı teoremi</span>

Karmaşık analizdeki kalıntı teoremi veya bilinen bir diğer adıyla rezidü teoremi, analitik fonksiyonların kapalı eğriler üzerindeki çizgi integrallerini bulmak için kullanılan önemli bir araçtır ve ayrıca sık bir şekilde gerçel integralleri bulmak için de kullanılır. Cauchy integral teoremini ve Cauchy integral formülünü genelleştirir.

<span class="mw-page-title-main">Eugène Charles Catalan</span> Fransız-Belçikalı matematikçi

Eugène Charles Catalan, sürekli kesirler, tanımlayıcı geometri, sayı teorisi ve kombinatorikler üzerinde çalışan Fransız ve Belçikalı bir matematikçiydi. Göze çarpan katkıları arasında uzayında periyodik bir minimal yüzey keşfetmek vardı; sonunda 2002'de kanıtlanabilen ünlü Catalan varsayımını ifade etti ve bir kombinatoryal problemi çözmek için Catalan sayılarını tanıttı.

Matematikte, özellikle karmaşık analizde, Cauchy-Hadamard teoremi bir kuvvet serisinin yakınsaklık yarıçapını hesaplamakta kullanılan önemli bir sonuçtur. Teorem ismini, Fransız matematikçi Augustin Louis Cauchy ve Jacques Hadamard'dan almıştır. Teorem, ilk defa 1821 yılında Cauchy tarafından yayınlanmıştır. Ancak; Hadamard aynı sonucu tekrar bulana kadar o kadar yaygın olarak da bilinen bir sonuç olmamıştır. Hadamard'ın bu teoremi ilk keşfi 1888'de olmuştur ve hatta bulduğu bu sonucu 1892'de yazdığı tezinde de kullanmıştır.

<span class="mw-page-title-main">René-Louis Baire</span> Fransız matematikçi (1874 – 1932)

René-Louis Baire, gelecekteki teoremleri genelleştirmeye ve kanıtlamaya yardımcı olan Baire kategori teoremi ile ünlü bir Fransız matematikçiydi. Teorisi ilk olarak 1899'da Sur les fonctions de değişken réelles adlı tezinde yayınlandı.

<span class="mw-page-title-main">Gaspard-Gustave Coriolis</span> Fransız matematikçi, mekanik mühendis ve bilim insanı (1792 – 1843)

Gaspard-Gustave de Coriolis bir Fransız matematikçi, makine mühendisi ve bilim insanıdır. En çok, dönen bir referans çerçevesinde tespit edilen ve Coriolis etkisi'ne yol açan tamamlayıcı kuvvetler üzerine yaptığı çalışmalarla tanınır. Bir mesafe boyunca hareket eden bir kuvvet tarafından enerjinin aktarılması için "travail" terimini ilk kullanan oydu.

Jean-Robert Argand, Fransız amatör matematikçidir. Karmaşık sayılar olarak bilinen Argand diyagramını geometrik yorumlarıyla yayınladı.

<span class="mw-page-title-main">Michel Rolle</span> Fransız matematikçi (1652 – 1719)

Michel Rolle bir Fransız matematikçiydi. En çok Rolle teoremi (1691) ile tanınır. Aynı zamanda Avrupa'da Gauss eliminasyon yöntemi'nin (1690) mucitlerinden biridir.

<span class="mw-page-title-main">Jacques Hadamard</span> Fransız matematikçi (1865 – 1963)

Jacques Salomon Hadamard ForMemRS sayı teorisi, karmaşık analiz, diferansiyel geometri ve Kısmi diferansiyel denklemlere önemli katkılarda bulunan Fransız matematikçidir.

<span class="mw-page-title-main">Jean-Victor Poncelet</span> Fransız siyasetçi

Jean-Victor Poncelet, École Polytechnique'in Komutan Generali olarak görev yapan Fransız bir mühendis ve matematikçiydi. Projektif geometrinin canlandırıcısı olarak kabul edilir. Traité des propriétés projectives des figures adlı çalışması, Gérard Desargues'in 17. yüzyılda konuyla ilgili çalışmasından bu yana konuyla ilgili ilk tanımlayıcı metin olarak kabul edilir. Daha sonra bu metne bir giriş yazmıştır: Applications d'analyse et de géométrie.

<span class="mw-page-title-main">Émile Picard</span> Fransız matematikçi (1856 – 1941)

Charles Émile Picard, Fransız matematikçi. 1924'te Académie française'in 1. koltuğunu işgal eden on beşinci üye seçildi

<i>Cours dAnalyse</i>

Cours d'Analyse de l’École Royale Polytechnique; I.re Partie. Analyse algébrique Augustin-Louis Cauchy tarafından 1821'de yayınlanan sonsuz küçükler hesabında ufuk açıcı bir ders kitabıdır. Bu makale, kitabın içeriğini açıklarken Bradley ve Sandifer'in çevirisini takip etmektedir.

<span class="mw-page-title-main">Gabriel Lamé</span> Fransız matematikçi (1795 – 1870)

Gabriel Lamé, eğrisel koordinatları kullanarak kısmi diferansiyel denklemler teorisine ve matematiksel elastikiyet teorisine katkıda bulunan bir Fransız matematikçiydi.

<span class="mw-page-title-main">Louis Poinsot</span> Fransız matematikçi ve fizikçi (1777-1859)

Louis Poinsot Fransız matematikçi ve fizikçidir. Poinsot, katı bir cisme etki eden bir kuvvetler sisteminin tek bir kuvvet ve bir çift olarak nasıl çözülebileceğini gösteren geometrik mekaniğin mucidiydi.