İçeriğe atla

Atomik ahenk

Atomik ahenk Fizikte (uyum, eş-uyum,koherens), çok katlı atomik sistemlerin katları arasında indüklenmiş uyumdur ki, bazen ahenkli elektromanyetik dalga ile etkileştiğinde gözlenir.

Eğer, bir eşfazlı, dar  band-genişliği olan lazer iki seviyeli bir sisteme uygulanırsa, dalga fonksiyonu temel ve uyarılmış seviyeler arasında Rabi salınımı yapar. Sistem zaman içinde bazı noktalarda ani bozulmaya uğrar ve dalga fonksiyonu, temel-seviye-dalga fonksiyonuna çöker. Oradan sonra, bir sonraki ani bozulmaya kadar yeni bir Rabi salınımı başlar. Esasen her ani bozulma Rabi salınımının fazını değiştirir. Eğer tek iki-seviyeli sistemin yerine çokça özdeş iki-seviyeli sistemler olursa(birçok aynı tür atomlardaki gibi), bu sefer hepsi birden aynı anda ve böylece hepsi birlikte aynı fazda Rabi salınımına başlar.Fakat, ani bozulması farklı olan atomlar farklı(ve rastgele) zamanlarda kendi temel-eneji seviyelerine çökerler ve yeni bir Rabi salınımı başlar.Bu nedenle zaman geçtikçe  çok ama çok az atom  aynı fazda kalır. Buna da ahensizlik(uyumsuzluk,atomlar gibi bireysel sistemler  artık birbiriyle uyumlu değildir anlamına gelir) denir.

Atomik ahenk(uyumluluk) iki-seviyeli sistemden daha fazla, hazırlığı ise tek bir lazerden daha fazla gerektirebilir.

Atomik ahenk, elektromanyetik indüklenmiş saydamlık(EİS), terslenmesiz sızma(TS), emilmesiz gelişmiş dağılım(EGD),Stimule edilmiş Raman adiyabatik geçidi(STiRAG) ve gelişmiş verimli doğrusal olmayan optiksel etkileşim gibi birçok araştırma alanlarında esastır.

Ayrıca

  • Rabi döngüsü

İlgili Araştırma Makaleleri

Dalga-parçacık ikililiği teorisi tüm maddelerin yalnızca kütlesi olan bir parçacık değil aynı zamanda da enerji transferi yapan bir dalga olduğunu gösterir. Kuantum mekaniğinin temel konsepti, kuantum düzeyindeki objelerin davranışlarında ‘’parçaçık’’ ve ‘’dalga’’ gibi klasik konseptlerin yetersiz kalmasından dolayı bu teoriyi işaret eder. Standart kuantum yorumları bu paradoksu evrenin temel özelliği olarak açıklarken, alternatif yorumlar bu ikililiği gelişmekte olan, gözlemci üzerinde bulunan çeşitli sınırlamalardan dolayı kaynaklanan ikinci dereceden bir sonuç olarak açıklar. Bu yargı sıkça kullanılan, dalga-parçacık ikililiğinin tamamlayıcılık görüşüne hizmet ettiğini, birinin bu fenomeni bir veya başka bir yoldan görebileceğini ama ikisinin de aynı anda olamayacağını söyleyen Kopenhag yorumu ile açıklamayı hedefler.

<span class="mw-page-title-main">Elektron dizilimi</span>

Elektron dizilimi, atom fiziği ve kuantum kimyasında, bir atom ya da molekülün elektronlarının atomik ya da moleküler orbitallerdeki dağılımıdır. Örneğin Neon atomunun elektron dizilimi 1s2 2s2 2p6 olarak gösterilir.

<span class="mw-page-title-main">Lazer</span> ışığın uyarılmış radyasyon ile yükseltilmesini sağlayan bir optik düzenek

Lazer ışığın uyarılmış radyasyon ile yükseltilmesini sağlayan bir optik düzenektir. İsmini "Light Amplification by Stimulated Emission of Radiation" kelimelerinin baş harflerinden alır ve bu, "ışığın uyarılmış ışıma ile yükseltilmesi" anlamına gelir. İlk lazer, 1960 yılında Theodore Maiman tarafından Charles Townes ve Arthur L. Schawlow'un teorileri baz alınarak üretilmiştir. Lazerin ışıktan daha düşük mikrodalgafrekanslarında çalışan versiyonu olan "maser" ise Townes tarafından 1953 yılında bulunmuştur.

<span class="mw-page-title-main">Hertz</span> SI birim sisteminde frekans birimi

Hertz, SI birim sisteminde frekans (sıklık) birimidir. İsmini elektromanyetik dalgaların var olduğunu ilk kanıtlayan kişi olan Alman fizikçi Heinrich Rudolf Hertz'den alır. Hertz'in yaygın kullanım alanlarından bazıları genelde sesle alakalı uygulamalarda kullanılan sinüs dalgaları ve müzik notalarını göstermektir. Hertz bazen de foton enerji eşitliği ile enerjiyi temsil etmek amacıyla da kullanılabilir.

<span class="mw-page-title-main">Mazer</span>

Mazer ya da maser, atomların, dışarıdan uyarılması neticesinde dışarıya salınan radyasyon yardımı ile elde edilen, genliği yükseltilmiş elektromanyetik dalga. Mazer, önceleri ilk mazerin mikrodalga frekansında çalışması sebebiyle İngilizce cümlesindeki kelimelerin baş harflerinin alınmasından türetilmiştir. Bugünse işitme frekansından itibaren, görünen ve morötesi frekanslı elektromanyetik bölgelerde dahi aynı prensip tatbik edildiğinden mazer, Molecular amplification by Stimulated Emission of Radiation olarak tarif edilmektedir. Mazer, uyarılmış radyasyon yayılımıyla mikrodalga veya moleküler dalga kuvvetlendirilmesi demektir. Cihaz, hassas olarak tayin edilmiş frekansta mikrodalga osilasyonları (titreşimleri) ve düşük gürültü seviyeli amplifikasyon (kuvvetlendirme) elde etmeyi sağlar. Bu maksatla atomların ve moleküllerin iç enerjisinden faydalanan bir amplifikatör ve osilatör grubu kullanılır. Aletin çalışmasının temel prensibi olan uyarılmış emisyon, uyarılmış haldeki bir atoma, dışarıdan eşit enerjili bir fotonun çarpması sonucu atomun aynı özellikli bir foton yayması şeklinde meydana gelir. Böylece atoma çarpan foton veya dalgalar çarptıkları uyarılmış atomlar tarafından yayılan fotonlarla kuvvetlenir. Bir mazer, gaz veya katı halde aktif bir ortamdan ibarettir. Sistem çeşitli frekanslar halinde elektromanyetik bir radyasyona maruz bırakılır. İçerideki atomların çoğu bu tesirle yüksek enerjili (uyarılmış) hale gelir. Böylece uyarılmış bir frekans meydana gelir. Aktif ortam, rezonans sağlayan bir boşlukla çevrili olduğundan, tek bir çıkış frekansına eşdeğer osilasyon modlu paralel dalgalar meydana gelir. Çok fazla çeşitli, koherent ve tek renk ışık elde etmek amacıyla oluşturulan optik düzenekler mazerdir. Bunların optik frekanslarda çalışanlarına optik mazer veya lazer adı verilir. Birkaç milimetreden daha uzun dalga boyları için rezonatör olarak metal bir kutu kullanılır.Bu kutunun boyutu titreşim modlarından yalnızca biri atomların yaymış oldukları ışınımların frekanslarıyla çalışacak biçimde belirlenir, kutuda yalnızca bir ses frekansında rezonansa uğramış gibi belirli bir mikro dalga frekansında rezonansa gelir.

<span class="mw-page-title-main">Rezonans (fizik)</span>

Rezonans, fizikte bir sistemin bazı frekanslarda diğerlerine nazaran daha büyük genliklerde salınması eğilimidir. Bunlar, o sistemin rezonans (tınlaşım) frekansları olarak adlandırılır. Bu frekanslarda küçük periyodik kuvvetler bile çok büyük genlikler üretebilir.

<span class="mw-page-title-main">Enerji seviyesi</span>

Enerji seviyesi, atom çekirdeğinin etrafında katman katman biçiminde bulunan kısımların her biridir. Bu yörüngelerde elektronlar bulunur. Yörüngenin numarası; 1, 2, 3, 4, ... gibi sayı değerlerini alabilir. Yörünge numarasına baş kuantum sayısı da denir ve "n" ile gösterilir. Yörünge numarası ile yörüngenin çekirdeğe uzaklığı doğru orantılıdır.

<span class="mw-page-title-main">Spektroskopi</span>

Spektroskopi elektromanyetik radyasyon ile maddenin etkileşiminin radyasyonun dalga boyu veya frekansının bir fonksiyonu olarak ortaya çıkan elektromanyetik spektrumu (tayf) ölçen ve yorumlayan bir çalışma alanıdır. Başka bir deyişle, elektromanyetik spektrumun tüm bantlarında görünür ışıktan kaynaklı olarak meydana gelen bir kesin renk çalışmasıdır.

Yoğun madde fiziği, maddenin yoğun hallerinin fiziksel özellikleriyle ilgilenen bir fizik dalıdır. Yoğun madde fizikçileri bu hallerin davranışını fizik kurallarını kullanarak anlamaya çalışır. Bunlar özellikle kuantum mekaniği kuralları, elektromanyetizma ve istatistiksel mekaniği içerir. En bilinen yoğun fazlar katı ve sıvılardır, harici yoğun fazlar ise düşük sıcaklıktaki bazı materyaller tarafından gösterilen üstünileten faz, atom kafeslerindeki dönüşlerin ferromanyetik ve antiferromanyetik fazları ve soğuk atom sistemlerinde bulunan Bose-Einstein yoğunlaşması. Araştırma için uygun sistemlerin ve fenomenlerin çeşitliliği yoğun madde fiziğini modern fiziğinin en aktif alanı yapıyor. Her 3 Amerikan fizikçiden biri kendini yoğun madde fizikçisi olarak tanımlıyor ve Yoğun Madde Fiziği Bölümü Amerikan Fizik Topluluğu’ndaki en geniş bölümdür. Bu alan kimya, malzeme bilimi ve nano teknoloji ile örtüşür ve atom fiziği ve biyofizikle de yakından ilgilidir. Teorik yoğun madde fiziği teorik parçacık ve nükleer fizikle önemli kavramlar paylaşır.

Salınım, merkezi bir değere ilişkin veya iki veya daha fazla farklı durum arasındaki bazı ölçümlerin genellikle zamanla tekrarlayan veya periyodik değişimidir. Sarkaç ve alternatif akım bilinen salınım örnekleridir. Salınımlar fizikte atomlar arasındakiler gibi karmaşık etkileşimlere yaklaşmak için kullanılabilir.

Atom fiziği, atomu bir bütün olarak atomların etkileşimlerini, atomun ve moleküllerin yapısı, enerji düzeyleri, dalga fonksiyonlari ve elektromanyetik geçişleri, atomlar arası bağlar, moleküler yapılar, atom modeli, atomik spektroskopide ince yapı ve aşırı ince yapı, spektroskopik gösterim ve enerji seviyeleri, geçiş olasılığı ve seçim kuralları, Zeeman olayı, Stark olayı, moleküler spektrum, iyonik bağlar, dönme, titreşim ve elektronik geçiş spektrumu, lazer gibi bölümleri- inceleyen fiziğin alt dallarından ikincisidir.

Kuantum mekaniğine göre atomik orbital, elektronların atom çekirdeği etrafındaki konumunu ve dalga-benzeri özelliklerini tanımlayan bir matematiksel fonksiyondur. Elektronun atom çekirdeği etrafındaki belirli bir bölgede bulunma olasılığı bu fonksiyon aracılığı ile hesaplanabilir. Fizikte atomik, kimyada orbital olarak geçer.

<span class="mw-page-title-main">Kare dalga</span>

Kare dalga, genliğin sabit bir frekansla, iki değer, maksimum ve minumum, arasında eşit süreler kalarak değiştiği, sinüsoidal olmayan periyodik dalgadır. İdeal kare dalgada genliğin iki seviye arasında geçişi anlıktır; bu sırada herhangi bir gecikme yaşanmaz. Ancak bu durum fiziksel sistemlerde gerçeklenebilir değildir. Kare dalgalar elektronikte ve sinyal işlemede sıkça kullanılır. Kare dalga, genlik seviyelerinde kalma süresi farklı olabilen dikdörtgen dalganın özel halidir.

<span class="mw-page-title-main">Lene Hau</span>

Lene Vestergard Hau, Danimarkalı fizikçidir. 1999 yılında, süper akışkan kullanımıyla bir ışık demetinin hızını saniyede 17 metreye kadar yavaşlatmayı başarmış ve 2001'de ışık demetini tümüyle durdurmayı başarmış bir Harvard Üniversitesi takımını yönetti. Bu deneyleri temel alan sonraki çalışmaları, kuantum şifrelemesi ve kuantum işlemciliği için önemli etkileri olan bir sürece, ışığın maddeye ardından da maddenin geri ışığa dönüşmesi çalışmalarına sürükledi. Daha yeni çalışmaları aşırı soğuk atomlar ve nanoskopik ölçekteki sistemlerin alışılmamış etkileşimleriyle ilgili araştırmalar içerir. Fizik ve uygulamalı fizik öğretmesi dışında, Harvard'da, fotovoltaik hücreler, nükleer enerji, piller ve fotosentezi içeren Enerji Bilimi dersi verdi. Kendi deney ve araştırmalarının yanı sıra, sık sık Uluslararası konferanslarda konuşma yapması istenmektedir ve bir sürü kurumun bilim politikalarının oluşturulması sürecine dâhil olmaktadır. Danimarka'da önde gelen bilim politikaları ve araştırma geliştiricilerinin yanı sıra devlet bakanlarının da katıldığı, Kopenhag’da 7 Şubat 2013’te düzenlenen EliteForsk-konferencen 2013 ’te Keynote Konuşmacı olarak bulundu.

<span class="mw-page-title-main">Yıldızlararası ortam</span>

Astronomide Yıldızlar arası ortam (ISM), bir galaksideki yıldız sistemleri arasında var olan maddedir. Bu madde iyonik, atomik ve moleküler formda gaz, toz ve kozmik ışınlar içerir. Yıldızlararası uzayı doldurur ve galaksiler arası uzaya iyi bir şekilde uyum sağlar. Aynı hacmi kaplayan elektromanyetik radyasyon şeklindeki enerji de yıldızlararası radyasyon alanıdır.

Kimyasal elementlerin ya da kimyasal bileşiklerin emisyon spektrumu atom ya da moleküllerin yüksek enerji seviyesinden düşük enerji seviyesine geçişinden elde edilen elektromanyetik radyasyonun frekans spektrumudur. Yayılmış fotonun enerjisi iki enerji düzeyi arasındaki farka eşittir. Her atom için birçok mümkün geçişler vardır ve enerji düzeyleri arasındaki her geçiş spesifik enerji farkına sahiptir. Bu farklı geçişlerin toplamı, farklı ışınlar halinde gönderilmiş dalga boylarına ve emisyon spektrumunun düzenlenmesine neden olur. Her elementin emisyon spektrumu özeldir. Dahası, spektroskopi elementlerin madde içindeki bilinmeyen kompozisyonunu tespit etmek için kullanılabilir. Buna benzer olarak, moleküllerin emisyon spektrumları maddelerin kimyasal analizlerinde kullanılabilir.

Kuantum optiği yarı klasik ve kuantum mekaniği fiziğini kullanarak ışığı içeren olayları ve onun mikroskobik seviyelerdeki maddelerle etkileşimini inceler.

<span class="mw-page-title-main">Elektronik bant yapısı</span>

Katı hal fiziğinde, bir katının elektron kuşak yapısı ; katıdaki bir elektronun sahip olabileceği enerji aralıkları ya da sahip olamayacağı enerji aralıkları olarak tanımlanır. Enerji bant teorisi bu bant ve bant boşluklarını atom veya moleküllerin büyük periyodik kafeslerindeki bir elektron için, izinli kuantum mekaniksel dalga fonksiyonlarını inceleyerek çıkarır. Bant teorisi katıların birçok fiziksel özelliklerini; örneğin elektriksel direnç ve optik soğurum gibi, açıklamak için başarılı bir biçimde kullanılmaktadır ve katı hal cihazları anlamanın temelini oluşturmaktadır.

Atomik, moleküler ve optik fizik, bir ya da birkaç atomun ölçeğinde, madde-madde ve ışık-madde etkileşimi çalışmadır ve enerji, birkaç elektron voltları etrafında ölçeklenir. Üç alanla yakından ilişkilidir. AMO teorisi, klasik, yarı klasik ve kuantum işlemlerini kapsar. Tipik olarak, teori ve emisyon uygulamaları, elektromanyetik yayılım ve emilme, spektroskopi analizi, lazer ve mazerlerin kuşağı ve genel olarak maddenin optik özellikleri, uyarılmış atom ve moleküllerden, bu kategorilere ayrılır.

Terahertz metamalzemeleri birleşimin yeni bir sınıflandırılma biçimidir. Suni malzemeler hala terahertz (THz) frekanslarıyla etkileşimde olan gelişim süreci altındadır. Terahertz frekansları malzeme araştırmalarında sık sık 0.1'den 10 terahertz frekansına kadar kullanılmaktadırlar.