İçeriğe atla

Atomik, moleküler ve optik fizik

Atomik, moleküler ve optik fizik, bir ya da birkaç atomun ölçeğinde, madde-madde ve ışık-madde etkileşimi çalışmadır ve enerji, birkaç elektron voltları etrafında ölçeklenir.[1][2]:1356[3] Üç alanla yakından ilişkilidir. AMO teorisi, klasik, yarı klasik ve kuantum işlemlerini kapsar. Tipik olarak, teori ve emisyon uygulamaları, elektromanyetik yayılım ve emilme, spektroskopi analizi, lazer ve mazerlerin kuşağı ve genel olarak maddenin optik özellikleri, uyarılmış atom ve moleküllerden, bu kategorilere ayrılır.

Atomik ve moleküler fizik

Atomik fizik, moleküler fizik, moleküllerin fiziksel özelliklerinin çalışmaları iken, atom çekirdeği ve elektronlarının sistem izolasyonu olarak atom çalışmaları olan AMO’nun alt dalıdır. Atom fiziği terimi, standart İngilizce ’de atomik ile nükleer eş anlamlı olarak kullanıldığından dolayı, sıklıkla nükleer enerji ve nükleer bomba ile ilişkilendirildi. Fakat fizikçiler, bir çekirdek ve elektronlardan oluşan bir sistem olarak atom ile ilişkilendirilen atom fiziği ile sadece atom çekirdeğini dikkate alan nükleer fizik arasındaki farkı ayırt ettiler. Önemli deneysel teknikler, spektroskopinin çeşitli türleridir. Atom fiziği ile yakından ilgilenen moleküler fizik, ayrıca teorik kimya, fizikokimya ve kimyasal fizik ile büyük ölçüde örtüşmektedir.[4]

Her iki alt dal, bu düzenlemelerin değişimlerinden dolayı elektronik yapısı ve dinamik süreçleri ile ilgilidir. Genellikle bu çalışma, kuantum mekaniğini kullanmayı içerir.[5] Moleküler fizik için bu yaklaşım kuantum kimyası olarak bilinir. Atom fiziği alanındaki temel atom orbital teorisi olan moleküler fizik önemli özelliklerinden biri, moleküler orbital teorisini genişletmektir. Moleküler fizik moleküllerin atomik işlemleri ile ilgilidir, ancak bu ek olarak moleküler yapısı nedeniyle oluşan etkilerle de ilgilenir. Ayrıca atom ve moleküllerden bilinen, elektronik uyarma koşullar döndürülebilir ve titretilebilir. Bu döndürülmeler ve titreşimler, nicelendirilebilir; iki enerji seviyesi vardır. En küçük enerji farkı, farklı dönme koşulları vardır, bu yüzden, saf dönme spektrumları, elektromanyetik spektrumun kızılötesi bölgesindedir (yaklaşık 30 150 mikron dalga boyu). Titreşim spektrumları, kızılötesine yakın (yaklaşık 1 5 um) ve çoğunlukla görünür ve ultraviyole bölgelerde elektronik geçişlerden kaynaklanan spektrumdur. Çekirdekler arası mesafe gibi moleküllerin dönme ve titreşim spektrumları ölçümünden hesaplanabilir.[6]

Birçok bilimsel alanlarda olduğu gibi, sıkı tarif yüksek derecede yanıltıcı olabilir ve atom fiziği, genellikle, atomik, moleküler ve optik fiziğin geniş kapsamında kabul edilir. Fizik araştırma grupları genellikle bu yüzden sınıflandırılır.

Optik fizik

Optik fizik, elektromanyetik radyasyon kuşağının, madde ile radyasyonun etkileşimi ve bu radyasyonun özelliklerinin, özellikle radyasyonun manipülasyonu ve kontrolü, çalışmasıdır.[7] Keşif ve yeni bulguların uygulamalarına odaklı olan, optik ve optik mühendisliklerinden farklıdır. Güçlü bir ayrım yoktur, fakat optik fizik, uygulamalı optik ve optik mühendisliği arasında, optik mühendislik cihazları ve uygulamalı optik uygulamalarından bu yana, yeni cihazlar ve uygulamaların geliştirilmesine yol açan optik fizikteki bu temel araştırmalar için gerekli araştırmalardır. Genellikle aynı insanlar, hem temel araştırma hem de uygulamalı teknolojiyi geliştirmeye katılıyor.[8]

Optik fizikteki araştırmacılar, X-ışınlarına mikrodalgalardan elektromanyetik spektrum yayan, ışık kaynaklarının geliştirilmesi ve kullanılmasıdır. Alan, ışığın kuşağını ve algılamasını, doğrusal ve doğrusal olmayan optik süreçler ve spektroskopiyi içerir. Lazerler ve lazer spektroskopisi optik bilimi dönüştürdü. Optik fizikteki büyük çalışma, ayrıca kuantum optik ve tutarlılık ve femtosaniye optik için ayrılmıştır. Optik fizik, desteği, ultra kısa elektromanyetik alanlar, yüksek sahalarda atom boşluğu etkileşimi, elektromanyetik alanın kuantum özellikleri ve yoğun izole atomların doğrusal olmayan tepkilerinin alanlarında sağlar.[9]

Araştırmanın diğer önemli alanları, difraktif optik, düşük tutarlılık enterforemetre, optik koherens tomografi, yakın alan mikroskobu ve Nano-optik ölçümler için yeni optik tekniklerin geliştirilmesini içermektedir. Optik fizikteki araştırmalar, ultra hızlı optik bilim ve teknoloji üzerine vurgu yapar. Optik fizik uygulamaları, iletişim, ilaç, üretim ve hatta eğlence ilerlemelerini oluşturur.[10]

Geçmiş

Hidrojen atomunun Bohr model'i

Atom fiziğine geçişte ilk adımlardan biri, kimyasal elementin temel birimi modern terimlerde atomlardan oluşan maddenin tanımlanmasıdır. Bu teori, 18. yüzyılda John Dalton tarafından geliştirilmiştir. Onlar toplu olarak kendi gözlenebilir özelliklerine göre tarif ve tasnif edilebilir rağmen, bu, 19. yüzyılın sonlarının ortalarına doğru John Newlands ve Dmitri Mendeleyev tarafından gelişmekte olan periyodik tabloda özetlenebilecek kadar net değildi.[11]

Daha sonra, özellikle 19. yüzyılda Joseph von Fraunhofer, Fresnel’in, spektral çizgiler ve olguyu tanımlama girişimlerinin keşfetmesiyle atom fiziği ve optik fizik arasındaki bağlantı belli oldu.[12]

O zamandan beri, 1920'lere kadar, fizikçiler atom spektrumları ve cisim radyasyonu açıklamak için araştırmalar yaptılar. Bohr atom modeli, hidrojen spektral hatları açıklamak için bir girişimdir.[11]

Madde ve elektromanyetik radyasyonu Helyumun bilinmeyen elementi ve sayısız diğer nedenlerden dolayı güneş spektrumları, madde ve ışığın tamamen yeni bir matematiksel modeline yol açtı; kuantum mekaniği.[13]

Maddenin klasik osilatör modeli

Kırılma indeksi kökenini araştırmak için erken modeller, Paul Drude ve Hendrik Lorentz’in modeline göre klasik bir şekilde bir atomik sistemde bir elektron gibi muamele eder. Bir maddenin dalga boyuna bağımlı kırılma indisi (n) için bir kaynağı temin etme girişimi için geliştirilmiştir. Bu modelde, Gelen elektromanyetik dalgalar, bir atomun elektronunu salması için kuvvet uygular. Salınım genliği, sonra, gelen elektromanyetik dalganın frekansı ve osilatör tınlaşım frekansları arasında bir ilişki vardır. Birçok osilatörden yayılan bu dalgaların çakışması, daha sonra yavaş yavaş hareket eden bir dalgaya yol açar.[14]:4–8

Madde ve ışığın erken kuantum modeli

Max Planck, 1900 yılında termal dengedeki bir kutu içinde, elektromanyetik alanını açıklamak için bir formül türemiştir.[14]:8–9 Onun modeli, duran dalgaların bir süperpozisyonunu oluşturdu. Bir boyutlu düzlemde, kutu uzunluğu L olan ve dalga sayısının sadece sinüs dalgaları

Kutuda oluşabilir, (matematiksel olarak şeklinde gösterilen) n pozitif bir tam sayıdır. Bu kararlı dalgaların tarifi şu denklem ile gösterilir:

.

E0, elektrik alan genliği büyüklüğüdür. E x konumundaki elektrik alanını büyüklüğüdür.[14]:4–8,51–52

Temelden, Planck yasası elde edilmiştir. Ernest Rutherford, alfa parçacığı saçılması dayalı bir atomun, merkezi noktasal proton olduğunu sonuçlandırmıştır. O ayrıca hala küçük düzenlemeleri kabul edilmeyen Coulomb yasası ile bir elektronun proton tarafından çekilebileceğini düşünmüştür. Sonuç olarak, O elektronların proton etrafından döndüğüne inanıyordu. Niels Bohr, 1913 yılında Planck niceleme fikirleri ile atomu Rutherford modeli kombine etti. Sadece elektronun özel ve iyi tanımlanmış yörüngeleri bulunabilir ve ışık yaymazlar. Elektronların yörünge atlamalarında, yörüngenin enerjisinde farklı tekabül eden bir ışığı yayar veya emer. Onun enerji seviyelerindeki tahmini, daha sonra gözlemlerle tutarlı oldu.[14]:9–10

Belirli durgun dalgaların ayrı bir setine dayalı olan bu sonuçlar, sürekli, klasik osilatör modellemesi ile tutarsızdı.[14]:8

1905'te bir frekansın ışık dalgalarının  birleşimi bir enerjinin fotonu ile  Albert Einstein'in fotoelektrik üzerindeki çalışmaları. 1917'de Einstein uyarılmış emisyon, spontan emisyon ve absorpsiyon (elektromanyetik radyasyon) üç süreçlerinin getirilmesi ile Bohrs modeline bir uzantısı oluşturdu.[14]:11

Modern süreçler

Modern sürece yönelik büyük adımlar, Werner Heisenberg ’in matris mekaniği yaklaşımı ve Erwin Schrödinger tarafından Schrödinger denkleminin keşfi ile kuantum mekaniği formülasyonu oldu.[14]:12

AMO içinde yarı klasik süreç çeşitleri vardır. Mekanik kuantum süreçlenen ve klasik şekilde süreçlenen sorun görüşleri, eldeki belirli sorunlara bağlıdır. Yarı klasik yaklaşımlar, büyük ölçüde bağlantılı hesaplama maliyeti ve karmaşıklığında büyük bir azalma, AMO içinde hesaplama çalışmalarının her yerindedir.

Bir lazer etkisi altında madde için, atomik veya moleküler sistemin tamamen kuantum mekaniksel süreci, klasik bir elektromanyetik alanın etkisi altında olan sistem ile birleştirilir. Alan klasik bir şekilde süreçlendirilirken, bu, kendiliğinden emisyon ile uyuşmaz.[14]:14 Bu yarı klasik süreçler, çoğu sistemler için geçerlidir,[14]:16 özellikle bunlar yüksek yoğunluklu lazer alanlarının etkisi altında olanlardır,[2]:997[2]:724 Optik fizik ve kuantum optiği arasındaki ayrım, sırası ile yarı klasik süreçlerin ve kuantum süreçlerin kullanılmasıdır.[2]:997

Çarpışma dinamikleri ve yarı klasik süreçlerde, serbestliğin iç derecesi mekanik kuantum ile süreçlenebilir, söz konusu kuantum sistemlerinin göreli hareketi esnasında klasik bir şekilde süreçlenir.[2]:556 Yüksek hızlı çarpışmalar ortalama gözlemlendiğinde, elektron kuantum mekaniği ile süreçlendirilirken, çekirdek klasik bir şekilde süreçlendirilebilir. Düşük hızlı çarpışmalarda yaklaşım başarısız olur.[2]:754

Elektronların dinamikleri için klasik Monte-Carlo yöntemleri, tam kuantum süreçleri kullanılarak hesaplanan başlangıç koşulları içinde yarı klasik olarak tanımlanabilir, ancak tüm ilerideki süreçler klasiktir.[2]:871

İzole atomlar ve moleküller

İzole olmuş atam ve moleküllere genellikle atomik, moleküler ve Optik fizik dikkate alır. Atom modelleri çekirdek etrafına bir veya daha fazla elektron içerir. Bu modeller hidrojen molekülü veya hidrojen molekülü ile alakalıdır. Bu atomları, kendilerine özgün olan oluşum enerjileri, fiziksel halleri veya yoğunlukları etkilemez. Ancak iyonlaşma ve fotonlar tarafından uyarılan veya çarpışan atomlar etkiler.

İzole atomları modellerken, eğer gaz veya plazma molekülleri ise moleküler çekim kuvveti çok büyük olacağından gerçekçi olmadığı düşünülebilir yani kendine özgü moleküllerin büyük çoğunluğu zamanla izole olmuş gibi davranabilir. Çok sayıda molekül olsa bile atom ve molekül fiziği plazma fiziğinin ve atmosferik fiziğin altında yatan teoriyi sağlar.

Elektronik Gruplaşma

Elektronlar çekirdeğin etrafında hayali kabukları oluştururlar. Bunlar doğal olarak temel durumda olurlar ancak ışıktan (fotonlar) ve manyetik alanlardan enerji emilimi ile veya çarpışan bir parçacık (genelde başka elektronlar) ile etkileşim ile uyarılabilirler.

Kabuğu oluşturan elektronların bağlı durumda oldukları söylenir. Bir elektronu kabuğundan (sonsuzluğa alır) çıkarmak için gerekli olan enerjiye bağlanma enerjisi denir. Bir elektron tarafından bu miktarın üzerinde emilen enerji, enerjinin korunumu yasasına göre kinetik enerjiye dönüştürülür. Atomun iyonlaşma sürecine uğradığı söylenir.

Elektronun bağlanma enerjisinden az miktarda enerji emmesi durumunda ise, uyarılmış hale veya sanal hale geçiş yapabilir. İstatistiksel olarak yeterli bir zamanın ardından uyarılmış haldeki bir elektron, kendiliğinden emisyon ile daha düşük bir hale geçiş yapar. İki enerji seviyesi arasındaki enerji değişimi açıklanmalıdır (enerjinin korunumu). Nötr bir atomda sistem, enerjideki değişimin fotonunu yayacaktır. Ancak düşük hal iç kabuktaysa, enerjinin başka bir bağlı elektrona aktarıldığı yerde Auger etkisi olarak bilinen bir olay gerçekleşir ve elektronun süreme girmesine yol açar.

Işıkla uyarılma ile ulaşılabilecek elektronik konfigürasyonları ile ilgili sıkı seçim kuralları vardır - ancak çarpışma süreçleri ile uyarılma için böyle kurallar yoktur.

Ayrıca bakınız

Notlar

  1. ^ Atomic, molecular, and optical physics. National Academy Press. 1986. ISBN 0-309-03575-9. 
  2. ^ a b c d e f g Editor: Gordon Drake (Various authors) (1996). Handbook of atomic, molecular, and optical physics. Springer. ISBN 0-387-20802-X. 
  3. ^ Chen, L. T. (ed.) (2009). Atomic, Molecular and Optical Physics: New Research. Nova Science Publishers. ISBN 978-1-60456-907-0. 
  4. ^ C.B. Parker (1994). McGraw Hill Encyclopaedia of Physics (2. bas.). McGraw Hill. s. 803. ISBN 0-07-051400-3. 
  5. ^ R. E. Dickerson, I. Geis (1976). "chapter 9". Chemistry, Matter, and the Universe. W.A. Benjamin Inc. (USA). ISBN 0-19-855148-7. 
  6. ^ I.R. Kenyon (2008). "chapters 12, 13, 17". The Light Fantastic – Introduction to Classic and Quantum Optics. Oxford University Press. ISBN 9-780198-566465. 
  7. ^ Y. B. Band (2010). "chapters 3". Light and Matter: Electromagnetism, Optics, Spectroscopy and Lasers. , John Wiley & Sons. ISBN 978-0471-89931-0. 
  8. ^ Y.B. Band (2010). "chapters 9,10". Light and Matter: Electromagnetism, Optics, Spectroscopy and Lasers. John Wiley & Sons. ISBN 978-0471-89931-0. 
  9. ^ C.B. Parker (1994). McGraw Hill Encyclopaedia of Physics (2. bas.). McGraw Hill. ss. 933-934. ISBN 0-07-051400-3. 
  10. ^ I. R. Kenyon (2008). "5, 6, 10, 16". The Light Fantastic – Introduction to Classic and Quantum Optics (2. bas.). Oxford University Press. ISBN 9-780198-566465. 
  11. ^ a b R. E. Dickerson, I. Geis (1976). "chapters 7, 8". Chemistry, Matter, and the Universe. W.A. Benjamin Inc. (USA). ISBN 0-19-855148-7. 
  12. ^ Y.B. Band (2010). Light and Matter: Electromagnetism, Optics, Spectroscopy and Lasers. John Wiley & Sons. ss. 4-11. ISBN 978-0471-89931-0. 
  13. ^ P. A. Tipler, G. Mosca (2008). "chapter 34". Physics for Scientists and Engineers - with Modern Physics. Freeman. ISBN 0-7167-8964-7. 
  14. ^ a b c d e f g h i Haken, H. (1981). Light (Reprint. bas.). Amsterdam u.a.: North-Holland Physics Publ. ISBN 0444860207. 

Kaynakça

Dış bağlantılar

İlgili Araştırma Makaleleri

Fizik, maddeyi, maddenin uzay-zaman içinde hareketini, enerji ve kuvvetleri inceleyen doğa bilimi. Fizik, Temel Bilimler'den biridir. Temel amacı evrenin işleyişini araştırmaktır. Fizik en eski bilim dallarından biridir. 16. yüzyıldan bu yana kendi sınırlarını çizmiş modern bir bilim olmasına karşın, Bilimsel Devrim'den önce iki bin sene boyunca felsefe, kimya, matematik ve biyolojinin belirli alt dalları ile eş anlamlı olarak kullanılmıştır. Buna karşın, matematiksel fizik ve kuantum kimyası gibi alanlardan dolayı fiziğin sınırlarını net olarak belirlemek güçtür.

Dalga-parçacık ikililiği teorisi tüm maddelerin yalnızca kütlesi olan bir parçacık değil aynı zamanda da enerji transferi yapan bir dalga olduğunu gösterir. Kuantum mekaniğinin temel konsepti, kuantum düzeyindeki objelerin davranışlarında ‘’parçaçık’’ ve ‘’dalga’’ gibi klasik konseptlerin yetersiz kalmasından dolayı bu teoriyi işaret eder. Standart kuantum yorumları bu paradoksu evrenin temel özelliği olarak açıklarken, alternatif yorumlar bu ikililiği gelişmekte olan, gözlemci üzerinde bulunan çeşitli sınırlamalardan dolayı kaynaklanan ikinci dereceden bir sonuç olarak açıklar. Bu yargı sıkça kullanılan, dalga-parçacık ikililiğinin tamamlayıcılık görüşüne hizmet ettiğini, birinin bu fenomeni bir veya başka bir yoldan görebileceğini ama ikisinin de aynı anda olamayacağını söyleyen Kopenhag yorumu ile açıklamayı hedefler.

<span class="mw-page-title-main">Atom</span> tüm maddelerin kimyasal ve fiziksel özelliklerini taşıyan en küçük yapıtaşı

Atom veya ögecik, bilinen evrendeki tüm maddenin kimyasal ve fiziksel niteliklerini taşıyan en küçük yapı taşıdır. Atom Yunancada "bölünemez" anlamına gelen "atomos"tan türemiştir. Atomus sözcüğünü ortaya atan ilk kişi MÖ 440'lı yıllarda yaşamış Demokritos'tur. Gözle görülmesi imkânsız, çok küçük bir parçacıktır ve sadece taramalı tünelleme mikroskobu vb. ile incelenebilir. Bir atomda, çekirdeği saran negatif yüklü bir elektron bulutu vardır. Çekirdek ise pozitif yüklü protonlar ve yüksüz nötronlardan oluşur. Atomdaki proton sayısı elektron sayısına eşit olduğunda atom elektriksel olarak yüksüzdür. Elektron ve proton sayıları eşit değilse bu parçacık iyon olarak adlandırılır. İyonlar oldukça kararsız yapılardır ve yüksek enerjilerinden kurtulmak için ortamdaki başka iyon ve atomlarla etkileşime girerler.

<span class="mw-page-title-main">Elektron</span> Temel elektrik yüküne sahip atomaltı parçacık

Elektron, eksi bir temel elektrik yüküne sahip bir atomaltı parçacıktır. Lepton parçacık ailesinin ilk nesline aittir ve bileşenleri ya da bilinen bir alt yapıları olmadığından genellikle temel parçacıklar olarak düşünülürler. Kütleleri, protonların yaklaşık olarak 1/1836'sı kadardır. Kuantum mekaniği özellikleri arasında, indirgenmiş Planck sabiti (ħ) biriminde ifade edilen, yarım tam sayı değerinde içsel bir açısal momentum (spin) vardır. Fermiyon olmasından ötürü, Pauli dışarlama ilkesi gereğince iki elektron aynı kuantum durumunda bulunamaz. Temel parçacıkların tamamı gibi hem parçacık hem dalga özelliklerini gösterir ve bu sayede diğer parçacıklarla çarpışabilir ya da kırınabilirler.

<span class="mw-page-title-main">Elektron dizilimi</span>

Elektron dizilimi, atom fiziği ve kuantum kimyasında, bir atom ya da molekülün elektronlarının atomik ya da moleküler orbitallerdeki dağılımıdır. Örneğin Neon atomunun elektron dizilimi 1s2 2s2 2p6 olarak gösterilir.

<span class="mw-page-title-main">Elektromanyetizma</span> elektrikle yüklü parçacıklar arasındaki etkileşime neden olan fiziksel kuvvet

Elektromanyetizma, elektrikle yüklü parçacıklar arasındaki etkileşime neden olan fiziksel kuvvet'tir. Bu etkileşimin gerçekleştiği alanlar, elektromanyetik alan olarak tanımlanır. Doğadaki dört temel kuvvetten biri, elektromanyetizmadır. Diğer üçü; güçlü etkileşim, zayıf etkileşim ve kütleçekim kuvvetidir.

<span class="mw-page-title-main">Pauli dışarlama ilkesi</span> Kuantum mekaniği prensibi: iki özdeş fermiyon aynı anda, aynı kuantum halinde bulunamazlar.

Pauli dışarlama ilkesi ya da Pauli dışlama ilkesi, iki ya da daha çok özdeş fermiyonun aynı kuantum durumda olamayacağını belirten bir kuantum mekaniği yasasıdır. Bu yasa, kuramsal fizikçi Wolfgang Pauli tarafından 1925 yılında bulunmuştur. İlk bulunuşunda yasa yalnızca elektronlar için geçerliyken, 1940 yılında Spin-istatistik teoreminin bulunmasıyla birlikte bütün fermiyonları kapsayacak biçimde genişletilmiştir.

<span class="mw-page-title-main">Bohr modeli</span> bir atom modeli

Bohr atom modeli, Niels Henrik Bohr tarafından 1913 yılında, Rutherford atom modelinden yararlanılarak öne sürülmüştür.

<span class="mw-page-title-main">Enerji seviyesi</span>

Enerji seviyesi, atom çekirdeğinin etrafında katman katman biçiminde bulunan kısımların her biridir. Bu yörüngelerde elektronlar bulunur. Yörüngenin numarası; 1, 2, 3, 4, ... gibi sayı değerlerini alabilir. Yörünge numarasına baş kuantum sayısı da denir ve "n" ile gösterilir. Yörünge numarası ile yörüngenin çekirdeğe uzaklığı doğru orantılıdır.

<span class="mw-page-title-main">Spektroskopi</span>

Spektroskopi elektromanyetik radyasyon ile maddenin etkileşiminin radyasyonun dalga boyu veya frekansının bir fonksiyonu olarak ortaya çıkan elektromanyetik spektrumu (tayf) ölçen ve yorumlayan bir çalışma alanıdır. Başka bir deyişle, elektromanyetik spektrumun tüm bantlarında görünür ışıktan kaynaklı olarak meydana gelen bir kesin renk çalışmasıdır.

<span class="mw-page-title-main">Kuantum mekaniği</span> atom altı seviyede çalışmalar yapan bilim dalı

Kuantum mekaniği veya kuantum fiziği, atom altı parçacıkları inceleyen bir temel fizik dalıdır. Nicem mekaniği veya dalga mekaniği adlarıyla da anılır. Kuantum mekaniği, moleküllerin, atomların ve bunları meydana getiren elektron, proton, nötron, kuark, gluon gibi parçacıkların özelliklerini açıklamaya çalışır. Çalışma alanı, parçacıkların birbirleriyle ve ışık, x ışını, gama ışını gibi elektromanyetik ışınımlarla olan etkileşimlerini de kapsar.

Atom fiziği, atomu bir bütün olarak atomların etkileşimlerini, atomun ve moleküllerin yapısı, enerji düzeyleri, dalga fonksiyonlari ve elektromanyetik geçişleri, atomlar arası bağlar, moleküler yapılar, atom modeli, atomik spektroskopide ince yapı ve aşırı ince yapı, spektroskopik gösterim ve enerji seviyeleri, geçiş olasılığı ve seçim kuralları, Zeeman olayı, Stark olayı, moleküler spektrum, iyonik bağlar, dönme, titreşim ve elektronik geçiş spektrumu, lazer gibi bölümleri- inceleyen fiziğin alt dallarından ikincisidir.

<span class="mw-page-title-main">Radyasyon</span> Uzayda hareket eden dalgalar veya parçacıklar

Radyasyon veya ışınım, elektromanyetik dalgalar veya parçacıklar biçimindeki enerji yayımı ya da aktarımıdır. "Radyoaktif maddelerin alfa, beta, gama gibi ışınları yaymasına" veya "Uzayda yayılan herhangi bir elektromanyetik ışını meydana getiren unsurların tamamına" da radyasyon denir. Bir maddenin atom çekirdeğindeki nötronların sayısı, proton sayısına göre oldukça fazla veya oldukça az ise; bu tür maddeler kararsız bir yapı göstermekte ve çekirdeğindeki nötronlar alfa, beta, gama gibi çeşitli ışınlar yaymak suretiyle parçalanmaktadırlar. Çevresine bu şekilde ışın saçarak parçalanan maddelere radyoaktif madde denir.

Kuantum mekaniğine göre atomik orbital, elektronların atom çekirdeği etrafındaki konumunu ve dalga-benzeri özelliklerini tanımlayan bir matematiksel fonksiyondur. Elektronun atom çekirdeği etrafındaki belirli bir bölgede bulunma olasılığı bu fonksiyon aracılığı ile hesaplanabilir. Fizikte atomik, kimyada orbital olarak geçer.

Modern fizik, klasik fizik ile tanımlanamayan olayları açıklamak üzere ortaya atılmış teorilerin tümüdür. Einstein'ın özel görelilik kuramından, Max Planck'ın kara cisim ışıması kuramına; Schrödinger'in kedisinden, kuark ve bozonlara kadar her şey modern fizik adı altında buluşur.

Kuantum mekaniği madde ve atomların ve atom içindeki parçacıklar ölçeğinde enerji ile etkileşimlerinin davranışını açıklayan bilimsel ilkeler organıdır: Bu makaleye teknik olmayan konuların tanıtımında ulaşabilirsiniz.

Kuantum mekaniğinin tarihi modern fizik tarihinin önemli bir parçasıdır. Kuantum kimyası tarihi ile iç içe olan kuantum mekaniği tarihi özünde birkaç farklı bilimsel keşif ile başlar; 1838’de Michael Faraday tarafından elektron demetlerinin keşfi, Gustav Kirchhoff tarafından 1859-60 kışı siyah cisim ışıması problemi beyanı, Ludwig Boltzmann’ın 1877 yılındaki fiziksel bir sistemin enerji seviyelerinin ayrıklardan olabileceği önerisi, 1887 yılında Heinrich Hertz’in fotoelektrik etkiyi keşfetmesi ve Max Planck’ın 1900 yılında ileri sürdüğü, herhangi bir enerji yayan atomik sisteminin teorik olarak birkaç farklı “enerji elementi” ε (epsilon) ne bölünebilmesi, bu enerji elementlerinden her birinin frekansına ν orantılı olması ve ayrı ayrı enerji üretebilmesi hipotezi, aşağıdaki formülle gösterilmiştir;

Kimyasal elementlerin ya da kimyasal bileşiklerin emisyon spektrumu atom ya da moleküllerin yüksek enerji seviyesinden düşük enerji seviyesine geçişinden elde edilen elektromanyetik radyasyonun frekans spektrumudur. Yayılmış fotonun enerjisi iki enerji düzeyi arasındaki farka eşittir. Her atom için birçok mümkün geçişler vardır ve enerji düzeyleri arasındaki her geçiş spesifik enerji farkına sahiptir. Bu farklı geçişlerin toplamı, farklı ışınlar halinde gönderilmiş dalga boylarına ve emisyon spektrumunun düzenlenmesine neden olur. Her elementin emisyon spektrumu özeldir. Dahası, spektroskopi elementlerin madde içindeki bilinmeyen kompozisyonunu tespit etmek için kullanılabilir. Buna benzer olarak, moleküllerin emisyon spektrumları maddelerin kimyasal analizlerinde kullanılabilir.

Kuantum optiği yarı klasik ve kuantum mekaniği fiziğini kullanarak ışığı içeren olayları ve onun mikroskobik seviyelerdeki maddelerle etkileşimini inceler.

<span class="mw-page-title-main">Elektronik bant yapısı</span>

Katı hal fiziğinde, bir katının elektron kuşak yapısı ; katıdaki bir elektronun sahip olabileceği enerji aralıkları ya da sahip olamayacağı enerji aralıkları olarak tanımlanır. Enerji bant teorisi bu bant ve bant boşluklarını atom veya moleküllerin büyük periyodik kafeslerindeki bir elektron için, izinli kuantum mekaniksel dalga fonksiyonlarını inceleyerek çıkarır. Bant teorisi katıların birçok fiziksel özelliklerini; örneğin elektriksel direnç ve optik soğurum gibi, açıklamak için başarılı bir biçimde kullanılmaktadır ve katı hal cihazları anlamanın temelini oluşturmaktadır.