İçeriğe atla

Atmosferik basınçta kimyasal iyonizasyon

Atmosferik basınçta kimyasal iyonizasyon bölme kesiti

Atmosferik basınçta kimyasal iyonizasyon (Atmospheric pressure chemical ionization-APCI), atmosferik basınçta (105 Pa) gaz fazı iyon molekülü reaksiyonlarını kullanan kütle spektrometrisinde kullanılan bir iyonizasyon yöntemidir.[1][2] Yaygın olarak yüksek performanslı sıvı kromatografisi (high performance liquid chromatography-HPLC) ile kombine edilir.[3] APCI, birincil iyonların bir çözücü sprey üzerinde üretildiği kimyasal iyonizasyona benzer bir yumuşak iyonizasyon yöntemidir.[4] APCI'nin ana kullanımı, 1500 Da'dan daha düşük moleküler ağırlığa sahip polar ve nispeten daha az polar termal olarak kararlı bileşikler içindir.[5]

Enstrüman yapısı

Atmosferik basınçta kimyasal iyonizasyon arayüzü

Tipik bir APCI genellikle üç ana bölümden oluşur: 350-500 °C' ye kadar ısıtılabilen bir nebülizör probu, bir korona deşarj iğnesine sahip iyonizasyon bölgesi ve orta seviye basınç altında bulunan bir iyon transfer bölgesi. Çözeltideki analit, doğrudan giriş probundan veya sıvı kromatografi (LC) elüatından 0.2-2.0 mL/dakika akış hızıyla pnömatik bir nebülizöre verilir. Isıtılmış nebülizörde, analit nebülizör N2 gazı ile eş eksenli olarak akarak ince damlacıklardan oluşan bir sis oluşturur. Isı ve gaz akışının kombinasyon etkileri ile ortaya çıkan sis bir gaz akımına dönüştürülür. Atmosferik basınç altında gaz akımı iyonlaşma bölgesine ulaştığında moleküller korona deşarjında iyonize edilir.[4] Numune iyonları daha sonra küçük bir delikli süzgeçten iyon transfer bölgesine geçer. İyonlar, daha sonraki kütle analizi için ek skimmer veya iyon odaklama lensleri aracılığıyla bir kütle analizörüne taşınabilir.

Kaynakça

  1. ^ Carroll (1974). "Subpicogram detection system for gas phase analysis based upon atmospheric pressure ionization (API) mass spectrometry". Analytical Chemistry. 46 (6): 706-710. doi:10.1021/ac60342a009. ISSN 0003-2700. 
  2. ^ Liquid Chromatography Mass spectrometry. 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33478: CRC Press, Taylor and Francis Group. 2006. ss. 249-250. ISBN 978-0585138503. 
  3. ^ Thomson (1 Mart 1998). "Atmospheric pressure ionization and liquid chromatography/mass spectrometry—together at last". Journal of the American Society for Mass Spectrometry (İngilizce). 9 (3): 187-193. doi:10.1016/S1044-0305(97)00285-7. ISSN 1044-0305. 
  4. ^ a b Mass Spectrometry: Principles and Applications. Wiley. 22 Ekim 2007. ISBN 978-0-470-51213-5. 20 Mart 2017 tarihinde kaynağından arşivlendi. Erişim tarihi: 13 Ekim 2020. 
  5. ^ Fundamentals of Contemporary Mass Spectrometry. John Wiley & Sons, Inc. 2007. ss. 47. ISBN 978-0-471-68229-5. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Enstrümental kimya</span>

Enstrümental analiz, analitleri bilimsel aletler (enstrümanlar) kullanarak inceleyen analitik kimya alanı.

<span class="mw-page-title-main">Kütle spektrometrisi</span> Kütle ölçer

Kütle spektrometrisi, İngilizce: Mass spectrometry (MS), kimyasal türleri iyonize edip oluşan iyonları Kütle-yük oranını esas alarak sıralayan bir analitik teknik. Daha basit terimler ile, bir kütle spektrumu bir numunen içindeki kütleleri ölçer. Kütle spektrometrisi birçok farklı alanda kullanılır ve kompleks karışımlara uygulandığı kadar saf numunelere de uygulanır.

<span class="mw-page-title-main">Elektrosprey iyonizasyon</span> İyon üretmek için kullanılan bir teknik

Elektrosprey iyonizasyon, bir aerosol oluşturmak için bir sıvıya yüksek voltajın uygulandığı bir elektrosprey kullanarak iyon üretmek için kütle spektrometresinde kullanılan bir tekniktir. Özellikle makromoleküllerden iyon üretiminde faydalıdır çünkü iyonize edildiğinde bu moleküllerin parçalanma eğiliminin üstesinden gelir.

<span class="mw-page-title-main">İyon kaynağı</span>

İyon kaynağı, atomik ve moleküler iyonlar oluşturan bir cihazdır. İyon kaynakları, kütle spektrometreleri, optik emisyon spektrometreleri, parçacık hızlandırıcılar, iyon implante ediciler ve iyon motorları için iyon oluşturmak üzere kullanılır.

<span class="mw-page-title-main">Elektron iyonizasyonu</span>

Elektron iyonizasyonu, enerjik elektronların iyonlar üretmek için katı veya gaz fazı atomları veya molekülleri ile etkileşime girdiği bir iyonizasyon yöntemidir. EI, kütle spektrometrisi için geliştirilen ilk iyonizasyon tekniklerinden biriydi. Ancak bu yöntem hala popüler bir iyonizasyon tekniğidir. Bu teknik, iyonları üretmek için yüksek enerjili elektronlar kullandığı için sert bir iyonizasyon yöntemi olarak kabul edilir. Bu, bilinmeyen bileşiklerin yapı tespiti için yardımcı olabilecek kapsamlı parçalanmaya yol açar. EI, moleküler ağırlığı 600'ün altında olan organik bileşikler için en yararlı olanıdır. Aynı zamanda, katı, sıvı ve gaz halindeki birkaç başka termal olarak kararlı ve uçucu bileşik, çeşitli ayırma yöntemleriyle birleştirildiğinde bu tekniğin kullanılmasıyla tespit edilebilir.

<span class="mw-page-title-main">Matriks-destekli lazer desorpsiyon/iyonizasyonu</span>

Kütle spektrometrisinde, matris destekli lazer desorpsiyon/iyonizasyonu (MALDI), minimum parçalanma ile büyük moleküllerden iyonlar oluşturmak için bir lazer enerjisi emici matris kullanan bir iyonizasyon tekniğidir. Daha geleneksel iyonizasyon yöntemleriyle iyonize edildiğinde kırılgan olma ve parçalanma eğiliminde olan biyomoleküllerin ve büyük organik moleküllerin analizinde uygulanmıştır. Gaz fazında büyük moleküllerin iyonlarını elde etmenin nispeten yumuşak bir yolu olması bakımından elektrosprey iyonizasyonuna (ESI) benzer, ancak MALDI tipik olarak çok daha az sayıda çok-yüklü iyon üretir.

<span class="mw-page-title-main">Kimyasal iyonizasyon</span>

Kimyasal iyonizasyon, kütle spektrometresinde kullanılan yumuşak bir iyonizasyon tekniğidir. İlk olarak Burnaby Munson ve Frank H. Field tarafından 1966'da tanıtıldı. Bu teknik, gaz iyon molekülü kimyasının bir dalıdır. Reaktif gaz molekülleri elektron iyonizasyonu ile iyonize edilir ve bunu takiben iyonlaşmayı sağlamak için gaz fazındaki analit molekülleri ile reaksiyona girerler. Negatif kimyasal iyonizasyon, yük değişimli kimyasal iyonizasyon ve atmosferik basınçlı kimyasal iyonizasyon, bu tekniğin yaygın varyasyonlarından bazılarıdır. CI, organik bileşiklerin tanımlanması, yapılarının aydınlatılması ve miktar tayininde birkaç önemli uygulamaya sahiptir. Analitik kimyadaki uygulamaların yanı sıra, kimyasal iyonizasyonun faydaları biyokimyasal, biyolojik ve tıbbi alanlara da uzanmaktadır.

<span class="mw-page-title-main">Kıvılcım iyonizasyon</span>

Kıvılcım iyonizasyonu katı bir örnekten gaz fazı iyonları üretmek için kullanılan bir yöntemdir. Hazırlanan katı numune buharlaştırılır ve aralıklı bir deşarj veya kıvılcım ile kısmen iyonize edilir. Bu teknik öncelikle kütle spektrometresi alanında kullanılmaktadır. Bir kütle spektrometresi ile birleştirildiğinde, tüm cihaz, kıvılcım iyonizasyon kütle spektrometresi veya kıvılcım kaynağı kütle spektrometresi olarak adlandırılır.

Sıvı kromatografi-kütle spektrometrisi, sıvı kromatografinin fiziksel ayırma yeteneklerini kütle spektrometrisinin (MS) kütle analizi yetenekleriyle birleştiren analitik bir kimya tekniğidir. Birleştirilmiş kromatografi - MS sistemleri, kimyasal analizde popülerdir çünkü her tekniğin bireysel yetenekleri sinerjik olarak geliştirilmiştir. Sıvı kromatografi, birden çok bileşenli karışımları ayırırken, kütle spektrometresi, yüksek moleküler özgüllük ve algılama hassasiyeti ile ayrı bileşenlerin yapısal kimliğini sağlar. Bu ikili teknik, çevresel ve biyolojik kaynaklı karmaşık örneklerde yaygın olarak bulunan biyokimyasal, organik ve inorganik bileşikleri analiz etmek için kullanılabilir. Bu nedenle, LC-MS, biyoteknoloji, çevre izleme, gıda işleme ve ilaç, tarım kimyası ve kozmetik endüstrileri dahil olmak üzere çok çeşitli sektörlerde uygulanabilir.

İndüksiyonla birleşmiş plazma kütle spektrometrisi, numuneyi iyonize etmek için indüksiyonla birleşmiş plazma kullanan bir kütle spektrometresi türüdür. Numuneyi atomize eder ve daha sonra tespit edilen atomik ve küçük çok atomlu iyonlar oluşturur. Çok düşük konsantrasyonlarda sıvı numunelerdeki metalleri ve bazı ametalleri tespit etme kabiliyeti ile bilinmekte ve kullanılmaktadır. Aynı elementin farklı izotoplarını algılayabilir, bu da onu İzotopik etiketlemede çok yönlü bir araç haline getirir.

<span class="mw-page-title-main">Alan desorpsiyonu</span> Alan desorpsiyonu ile ilgili sonuçlar burada

Alan desorpsiyonu (Field desorption-FD) bir tıraş bıçağı gibi keskin bir yüzeye sahip bir yayıcıya veya daha yaygın olarak bir filamana yüksek potansiyelli bir elektrik alanının uygulandığı kütle spektrometrisinde (MS) kullanılan bir iyon oluşturma yöntemidir. Alan desorpsiyonu, analitin gaz halindeki moleküllerinin iyonlaşmasına neden olabilecek yüksek bir elektrik alanı ile sonuçlanır. FD tarafından üretilen kütle spektrumları çok az veya hiç parçalanmaya neden olmaz çünkü FD yumuşak bir iyonizasyon yöntemidir. Moleküler radikal katyonlar arasında genelde M+ ve daha az sıklıkla protonlanmış moleküller baskındır. Teknik ilk olarak 1969'da Beckey tarafından bildirildi. Aynı zamanda uçucu olmayan ve termal olarak kararsız bileşikleri iyonize eden ilk iyonizasyon yöntemidir. FD' nin diğer iyonizasyon yöntemlerinden önemli bir farkı, bir numuneyi bombardıman etmek için birincil ışına ihtiyaç duymamasıdır.

<span class="mw-page-title-main">Hızlı atom bombardımanı</span>

Hızlı atom bombardımanı, yüksek enerjili atomlardan oluşan bir ışının iyonlar oluşturmak için bir yüzeye çarptığı kütle spektrometrisinde kullanılan bir iyonizasyon tekniğidir. Michael Barber tarafından 1980 yılında Manchester Üniversitesi'nde geliştirilmiştir. Atomlar yerine yüksek enerjili iyon demeti kullanıldığında (ikincil iyon kütle spektrometrisinde olduğu gibi, yöntem sıvı ikincil iyon kütle spektrometrisi olarak adlandırlır. FAB ve LSIMS' de analiz edilecek malzeme matris adı verilen uçucu olmayan kimyasal koruma ortamı ile karıştırılır ve yüksek enerjili atom ışınıyla vakum altında bombardımana tutulur. Atomlar tipik olarak argon veya ksenon gibi bir inert gazlardandır. Yaygın matrisler arasında gliserol, tiogliserol, 3-nitrobenzil alkol, 18-taç-6 eter, 2-nitrofeniloktil eter, sülfolan, dietanolamin ve trietanolamin bulunur. Bu teknik, ikincil iyon kütle spektrometrisi ve plazma desorpsiyon kütle spektrometrisine benzer.

<span class="mw-page-title-main">Termosprey</span>

Termosprey, sıvı numunenin çözücü akışının çok ince ısıtılmış bir kolondan geçerek ince sıvı damlacıklardan oluşan bir sprey haline geldiği yumuşak bir iyonizasyon kaynağıdır. Kütle spektrometrisinde atmosferik basınç iyonizasyonunun bir biçimi olarak, bu damlacıklar daha sonra bir çözücü iyon plazması oluşturmak için düşük akımlı bir deşarj elektrodu aracılığıyla iyonize edilir. Oluşan bu yüklü parçacıkları süzgeçten ve hızlandırma bölgesinden geçirilir. Ardından aerosol haline getirilmiş numuneyi bir kütle spektrometresine girer. Termosprey özellikle sıvı kromatografi-kütle spektrometrisinde (LC-MS) faydalıdır.

<span class="mw-page-title-main">Silisyum üzerinde desorpsiyon/iyonizasyon</span>

Silikon üzerinde desorpsiyon/iyonizasyon (DIOS), kütle spektrometresi analizi için gaz fazı iyonları oluşturmak amacı ile kullanılan yumuşak bir lazer desorpsiyon yöntemidir. DIOS, ilk yüzey tabanlı yüzey destekli lazer desorpsiyon/iyonizasyon yaklaşımı olarak kabul edilir. Önceki yaklaşımlar, bir gliserol matrisinde nanopartiküller kullanılarak gerçekleştirilmiştir, DIOS ise nano yapılı bir yüzey üzerine bir numunenin biriktirildiği ve numunenin lazer ışığı enerjisinin adsorpsiyonu yoluyla nanoyapılı yüzeyden doğrudan desorbe edildiği matris içermeyen bir tekniktir. DIOS, organik molekülleri, metabolitleri, biyomolekülleri ve peptitleri analiz etmek ve nihayetinde dokuları ve hücreleri görüntülemek için kullanılmıştır.

<span class="mw-page-title-main">Gerçek zamanlı direkt analiz</span>

Kütle spektrometrisinde, gerçek zamanlı doğrudan analiz, atmosferik molekülleri veya dopant moleküllerini iyonize eden helyum, argon veya nitrojen gibi gazlardan elektronik veya titreşimsel olarak uyarılmış hal türleri üreten bir iyon kaynağıdır. Atmosferik veya dopant moleküllerden üretilen iyonlar, analit iyonları üretmek için numune molekülleri ile iyon molekülü reaksiyonlarına girer. Düşük iyonlaşma enerjisine sahip analitler doğrudan iyonize edilebilir. DART iyonizasyon işlemi, çıkış elektroduna uygulanan potansiyele bağlı olarak pozitif veya negatif iyonlar üretebilir.

Membran girişli kütle spektrometrisi ; analitleri, yarı geçirgen bir membran yoluyla kütle spektrometresinin vakum haznesine sokma yöntemidir. Genellikle ince, gaz geçirgen, hidrofobik bir zar, örneğin polidimetilsiloksan, kullanılır. Numuneler, su, hava ve hatta bazen çözücüler dahil hemen hemen her sıvı olabilir. Numune giriş yönteminin en büyük avantajı basitliğidir. MIMS, çok az veya hiç numune hazırlığı olmadan gerçek zamanlı olarak çeşitli analitleri ölçmek için kullanılabilir. MIMS, küçük, polar olmayan moleküllerin ölçümü için en yararlı yöntemdir, çünkü bu tipteki moleküller, numuneye göre membran malzemesi için daha fazla afiniteye sahiptir.

<span class="mw-page-title-main">Lazer sprey iyonizasyonu</span>

Lazer sprey iyonizasyonu (LSI), yüklü bir partikül yığını oluşturmak için bir nötr partikül spreyi veya ablasyon materyali ile etkileşime giren bir lazer kullanarak iyon oluşturmak için kullanılan çeşitli yöntemlerden birini ifade eder. Bu şekilde oluşan iyonlar, kütle spektrometresi ile m/z oranına göre ayrılabilir. Lazer sprey, daha büyük moleküllerin tespiti için sıvı kromatografi-kütle spektrometresi ile birleştirilebilen birkaç iyon kaynağından biridir.

<span class="mw-page-title-main">Kapiler elektroforez kütle spektrometrisi</span> Kapiler elektroforezin sıvı ayırma işleminin kütle spektrometresi ile birleşiminden oluşan bir analitik kimya tekniğidir

Kapiler elektroforez kütle spektrometrisi (CE-MS), kapiler elektroforezin sıvı ayırma işleminin kütle spektrometresi ile birleşiminden oluşan bir analitik kimya tekniğidir. CE-MS, tek bir analizde yüksek ayırma verimliliği ve moleküler kütle bilgisi sağlamak için hem CE hem de MS'nin avantajlarını birleştirir. Yüksek çözünürlük ve hassasiyete sahiptir, minimum hacim gerektirir ve yüksek hızda analiz yapabilir. İyonlar tipik olarak elektrosprey iyonizasyonla oluşturulur ancak matris destekli lazer desorpsiyon/iyonizasyonu veya diğer iyonizasyon teknikleriyle de oluşturulabilirler. Proteomik ve biyomoleküllerin kantitatif analizinde ve klinik tıpta kullanılmaktadır. 1987'deki tanıtımından bu yana, yeni gelişmeler ve uygulamalar CE-MS'i güçlü bir ayırma ve tanımlama tekniği haline getirmiştir.

<span class="mw-page-title-main">Elektron yakalama ayrışması</span>

Elektron yakalama ayrışması, ardışık kütle spektrometrisinde peptitlerin ve proteinlerin yapısının aydınlatması için gaz fazı iyonlarını parçalama yöntemidir. MS/MS'de kütle seçilmiş öncü iyonun aktivasyonu ve ayrıştırılması için en yaygın kullanılan tekniklerden biridir. Teknik düşük enerjili elektronların, sıkışmış gaz fazı iyonlarına doğrudan eklenmesini içerir.

Kızılötesi çoklu foton ayrışması, genellikle orijinal (ana) molekülün yapısal analizi için gaz fazındaki molekülleri parçalamak amacıyla kütle spektrometrisinde kullanılan bir tekniktir.