İçeriğe atla

Atış hareketi

Suyun parabolik yörüngesi
Eğik atışta ilk hız
İlk hızın bileşenlerine ayrılması

Atış hareketi, Dünya yüzeyine yakın yerlerde; düşen, fırlatılan cisimlerin yaptığı harekettir. Bu harekette cismin ivmesi sabittir ve yerçekimi ivmesine eşittir.

İlk hız

Eğer cisim belli bir v0 ilk hızı ile atılırsa bu hız birim vektörler cinsinden aşağıdaki gibi yazılabilir.

Bileşenler, birim vektörler dışında, yatayla yapılan θ açısı cinsinden de yazılabilir:

,
.

Eğer cismin menzili, fırlatılma açısı ve maksimum yüksekliği biliniyorsa; ilk hız aşağıdaki gibi yazılabilir.

.

Kinematik nicelikler

Atış hareketi, sabit hızlı yatay hareketin ve sabit ivmeli düşey hareketin bir birleşimidir. Yatay ve düşeydeki hareketin formülleri birbirinden bağımsızdır.

İvme

Yatay harekette ivme yoktur, bu yüzden hız sabit ve v0cos θ ya eşittir. Düşey hareketteyse ivme sabittir ve g'ye eşittr. Böylece ivmenin bileşenleri şu şekilde yazılır:

,
.

Hız

Yatayda ivme olmadığı için cismin yatay hızı değişmez. Düşeyde ise cisim yükseliyorsa hız azalır, düşüyorsa artar. Herhangi bir t anında cismin hızları şu şekildedir:

,
.

Cismin toplam hızı Pisagor teoremi yardımıyla şu şekilde bulunur:

.

Yerdeğiştirme

Eğik atışta koordinatlar ve yerdeğiştirme

Atılma noktası orijin kabul edilirse, atılan cismin zamana bağlı koordinatları şu şekildedir:

,
.

Yerdeğiştirmenin büyüklüğü:

.

Parabolik yörünge

Cismin konumunun zaman parametresine bağlı denklemi şudur:

,
.

Zamandan bağımsız bir konum denklemi yazılmak istenirse şu şekilde olur:

,

Burada, g, θ ve v sabittir. Dolayısıyla fonksiyonun grafiği parabol şeklindedir. Bu da atış hareketinde yörüngenin parabolik olduğunu gösterir.

Atılan cisim parabol çizerek ilerleyeceği için

θ = atış açısı

h= maksimum yükseklik

x = maksimum yüksekliğe ulaştığı noktanın yatay uzaklığı (menzilin yarısı)

θ=arctan(2h/x) olur.

Maksimum yükseklik

Maksimum yükseklik h

Yerden eğik atılan bir cisim maksimum yüksekliğe çıktığında düşey hızı olur. Kinematik denklemleri kullanılırsa:

.

Bu yüksekliğe çıkış süresi

.

Buradan maksimum yükseklik şu bulunur:

.

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Yörünge</span> bir gökcisminin bir diğerinin kütleçekimi etkisi altında izlediği yola yörünge adı verilir

Gök mekaniğinde yörünge veya yörünge hareketi, bir gezegenin yıldız etrafındaki veya bir doğal uydunun gezegen etrafındaki veya bir gezegen, doğal uydu, asteroit veya lagrange noktası gibi uzaydaki bir nesne veya konum etrafındaki yapay uydunun izlediği kavisli bir yoldur. Yörünge, düzenli olarak tekrar eden bir yolu tanımlamakla birlikte, tekrar etmeyen bir yolu da ifade edebilir. Gezegenler ve uydular Kepler'in gezegensel hareket yasalarında tanımlandığı gibi, kütle merkezi elips biçiminde izledikleri yolun odak noktasında olacak şekilde yaklaşık olarak eliptik yörüngeleri takip ederler.

<span class="mw-page-title-main">Düzgün dairesel hareket</span>

Düzgün dairesel hareket, sabit bir kuvvetin etkisinde, bir çember üzerinde süratin değişmediği harekettir.

<span class="mw-page-title-main">Küresel koordinat sistemi</span>

Küresel koordinat sistemi, üç boyutlu uzayda nokta belirtmenin bir yoludur.

<span class="mw-page-title-main">Kutupsal koordinat sistemi</span>

Matematikte kutupsal koordinat sistemi veya polar koordinat sistemi, noktaların birer açı ve Kartezyen koordinat sistemindeki orijinin eşdeğeri olup "kutup" olarak bilinen bir merkez noktaya olan uzaklıklar ile tanımlandığı, iki boyutlu bir koordinat sistemidir. Kutupsal koordinat sistemi, matematik, fizik, mühendislik, denizcilik, robot teknolojisi gibi birçok alanda kullanılır. Bu sistem, iki nokta arasındaki ilişkinin açı ve uzaklık ile daha kolay ifade edilebildiği durumlar için özellikle kullanışlıdır. Kartezyen koordinat sisteminde, böyle bir ilişki ancak trigonometrik formüller ile bulunabilir. Kutupsal denklemler, çoğu eğri tipi için en kolay, bazıları içinse yegâne tanımlama yöntemidir.

<span class="mw-page-title-main">Kütle merkezi</span>

Fizikte, uzaydaki ağırlığın dağılımının ağırlık merkezi, birbirlerine göre olan ağırlıkların toplamlarının sıfır olduğu noktadır. Ağırlık dağılımı, ağırlık merkezi etrafında dengelenir ve dağılan ağırlığın kütle pozisyon koordinatlarının ortalaması onun koordinatlarını tanımlar. Ağırlık merkezine göre formüle edildiği zaman mekanikte hesaplamalar basitleşir.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

Açısal hız, bir objenin birim zamandaki açısal olarak yer değiştirme miktarına verilen isimdir. Açısal hız vektörel olup bir cismin bir eksen üzerindeki dönüş yönünü ve hızını verir. Açısal hızın SI birimi radyan/saniyedir, ancak başka birimlerde de ölçülebilir. Açısal hız genellikle omega sembolü ile gösterilir. Açısal hızın yönü genellikle dönüş düzlemine diktir ve sağ el kuralı ile bulunabilir.

<span class="mw-page-title-main">Beta fonksiyonu</span>

Matematik'te, beta fonksiyonu, Euler integrali'nin ilk türüdür,

<span class="mw-page-title-main">Euler spirali</span> düzlemsel eğri

Euler spirali, eğimi eğrinin uzunluğuyla doğrusal olarak degişen bir eğridir. Euler spiralleri yaygın olarak spiros, clothoids veya Cornu spiralleri olarak da adlandırılır. Euler spirallerinin kırınım hesaplamalarında uygulamaları vardır. Genellikle demiryolu ve karayolu mühendisliklerinde teğet eğrisi ve dairesel eğri arasındaki geometriyi bağdaştırmaya ve aktarmaya yarayan geçiş eğrisi olarak kullanılır. Teğet eğrisi ve dairesel eğri arasındaki geçiş eğrisinin eğimindeki lineer değişim prensibi Euler spiralinin geometrisini belirler:

Burada, en yaygın olarak kullanılan koordinat dönüşümü bazılarının bir listesi verilmiştir. Kısmi türevler alınırken çarpımın türevi gibi davranıldığı akıldan çıkarılmamalıdır. Bir örnek olarak fonksiyonunda üç çarpım vardır

<span class="mw-page-title-main">Gauss fonksiyonu</span>

Matematikte Gauss fonksiyonu, bir fonksiyon biçimidir ve şöyle ifade edilir:

<span class="mw-page-title-main">Işıktan hızlı hareket</span>

Astronomide, ışıktan hızlı hareket bazı radyo galaksilerin, kuasarların ve yakın zamanda bazı galaktik kaynaklarda denilen mikrokuasarlarda görülen görünüşte ışıktan daha hızlı hareket olduğudur Bu kaynakların hepsi yüksek hızlarda kütlesinin fırlamasından sorumlu bir kara delik içerdiği düşünülmektedir.

Fizikte, dairesel hareket bir nesnenin dairesel bir yörünge boyunca bir rotasyon ya da çemberin çevresinde yaptığı harekettir. Rotasyonun sürekli açısal değeriyle birlikte düzgün ya da değişen rotasyon değeriyle düzensiz olabilir. 3 boyutlu bir cismin sabit ekseni etrafındaki rotasyon parçalarının dairesel hareketini içerir. Hareketin denkliği bir cisim kütlesinin merkezini tanımlar.

Matematikte, uzunluğu 1 olan ve uzayda bir norma sahip olan vektöre birim vektör denir. Birim vektör genellikle ‘û‘ gibi şapkalı ve küçük harflerle ifade edilir. Normalize vektör veya versor olmayan bir sıfır vektörü u ile eş yönlü olan birim vektörü u

Matematiksel fizikte, hareket denklemi, fiziksel sistemin davranışını, sistem hareketinin zamanı ve fonksiyonu olarak tanımlar. Daha detaya girmek gerekirse; hareket denklemi, matematiksel fonksiyonların kümesini "devinimsel değişkenler" cinsinden izah eder. Normal olarak konumlar, koordinat ve zaman kullanılır ama diğer değişkenler de kullanılabilir: momentum bileşenleri ve zaman gibi. En genel seçim genelleştirilmiş koordinatlardır ve bu koordinatlar fiziksel sistemin karakteristiğinin herhangi bir uygun değişkeni olabilirler. Klasik mekanikte fonksiyonlar öklid uzayında tanımlanmıştır ama görelilikte öklid uzayı, eğilmiş uzay ile tanımlanmıştır. Eğer sistemin dinamiği biliniyor ise denklemler dinamiğin hareketini izah eden diferansiyel denklemlerin çözümleri olacaktır.

<span class="mw-page-title-main">Kepler yörüngesi</span> üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklayan kavram

Gök mekaniği olarak, Kepler yörüngesi üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklar.. Kepler yörüngesi yalnızca nokta iki cismin nokta benzeri yerçekimsel çekimlerini dikkate alır, atmosfer sürüklemesi, güneş radyasyonu baskısı, dairesel olmayan cisim merkezi ve bunun gibi bir takım şeylerin diğer cisimlerle girdiği çekim ilişkileri nedeniyle ihmal eder. Böylece Kepler problemi olarak bilinen iki-cisim probleminin, özel durumlara bir çözüm olarak atfedilir. Klasik mekaniğin bir teorisi olarak, aynı zamanda genel görelilik etkilerini dikkate almaz. Kepler yörüngeleri çeşitli şekillerde altı yörünge unsurları içine parametrize edilebilir.

<span class="mw-page-title-main">Sabit bir eksen etrafında dönme</span> dönme hareketinin özel bir durumu

Sabit bir eksen etrafında dönme dönme hareketinin özel bir durumudur. Sabit eksen hipotez yönünü değiştirerek bir eksen olasılığını dışlar ve salınım devinim gibi olguları tarif edemez. Euler’in dönme teoremine göre, Aynı zamanda, sabit eksenler boyunca eş zamanlı rotasyon imkânsızdır. Eğer iki rotasyona aynı anda kuvvet uygulanırsa, rotasyonun yeni ekseni oluşur.

<span class="mw-page-title-main">Yörünge mekaniği</span>

Yörünge mekaniği veya astrodinamik, roketler ve diğer uzay araçlarının hareketini ilgilendiren pratik problemlere, balistik ve gök mekaniğinin uygulamasıdır. Bu nesnelerin hareketi genellikle Newton'un hareket kanunları ve Newton'un evrensel çekim yasası ile hesaplanır. Bu, uzay görevi tasarımı ve denetimi altında olan bir çekirdek disiplindir. Gök mekaniği; daha genel olarak yıldız sistemleri, gezegenler, uydular ve kuyruklu yıldızlar gibi kütle çekimi etkisinde bulunan yörünge sistemleri için geçerlidir. Yörünge mekaniği; uzay araçlarının yörüngelerine ait yörünge manevraları, yörünge düzlemi değişiklikleri ve gezegenler arası transferler gibi kavramlara odaklanır ve itici manevralar sonuçlarını tahmin etmek için görev planlamacıları tarafından kullanılır. Genel görelilik teorisi, yörüngeleri hesaplamak için Newton yasalarından daha kesin bir teoridir ve doğru hesaplar yapmak ya da yüksek yerçekimini ihtiva eden durumlar söz konusu olduğunda bazen gereklidir.

Trigonometrik fonksiyonların türevleri, trigonometrik bir fonksiyonun türevini yani bir değişkene göre değişim oranını bulmanın matematiksel sürecidir. Örneğin, sinüs fonksiyonunun türevi şeklinde yazılır, bu da sin(x) fonksiyonunun belirli bir açı x = a için değişim oranının o açının kosinüsü ile verildiği anlamına gelir.

<span class="mw-page-title-main">Pisagor trigonometrik özdeşliği</span> sin² θ + cos² θ = 1

Pisagor trigonometrik özdeşliği, daha basit ifadeyle Pisagor özdeşliği olarak da adlandırılır, Pisagor teoremini trigonometrik fonksiyonlar cinsinden ifade eden bir özdeşliktir. Açıların toplam formülleri ile birlikte, sinüs ve kosinüs fonksiyonları arasındaki temel bağıntılardan biridir. Özdeşlik şu şekildedir: