İçeriğe atla

Asal çarpanlara ayırma

Sayı teorisinde, asal çarpanlara ayırma bir bileşik sayının, çarpıldıklarında yine aynı sayıyı verecek şekilde, bir ve kendisi dışındaki bölenlerine ayrılmasıdır.

Sayılar çok büyük olduğunda, kuantum olmayan hızlı bir algoritma bilinmemektedir. 2009 yılında sonuçlanan bir çalışmada bir grup araştırmacı 232 basamaklı bir sayıyı (RSA-768), yüzlerce makineyi iki yıl boyunca çalıştırarak çarpanlarına ayırmışlardır.[1] Bu problemin varsayılan zorluğu, kriptografi alanında sıkça kullanılan RSA gibi algoritmaların tasarımında çok önemli bir yere sahiptir. Bu problem, eliptik eğriler, cebirsel sayı kuramı ve kuantum hesaplama gibi matematik ve bilgisayar biliminin birçok alanında önem arz etmektedir.

Belli uzunluktaki her sayının çarpanlara ayrılma zorluğu aynı değildir. Çarpanlara ayrılması en zor sayılar (halihazırda bilinen teknikler ışığında) yarıasallar, yani iki asal sayının çarpımı şeklinde yazılabilen sayılardır. Bu sayılardan ikisi de büyük, mesela 2000 bit uzunluğunda ve rastgele, birbirleriyle yakın uzunlukta (fakat çok yakın değil, çünkü böyle sayılar için Fermat'ın çarpanlara ayırma metodu kullanılabilir) olacak şekilde seçildiği takdirde, en hızlı çarpanlara ayırma algoritmaları en hızlı bilgisayarlarda dahi çalışsa pratikte kullanılabilecek bir hızda çözüme ulaşamamaktadır. Çarpanlara ayrılacak sayının asal çarpanlarının bit uzunlukları arttıkça algoritmanın çalışma süresi şiddetli biçimde artmaktadır.

RSA gibi çok sayıda kriptografik protokol bu problemin veya bir benzerinin zorluğuna dayanmaktadır. Bir başka deyişle eğer bir sayıyı hızlı bir şekilde çarpanlara ayırma algoritması bulunsaydı, RSA tabanlı açık anahtar kriptografisi güvenliğini yitirirdi.

Asallara ayırma

864 sayısının asal çarpanlarına ayrılması. Asal çarpanları yazmanın kısa bir yolu:

Aritmetiğin temel teoremi gereğince, her pozitif tam sayı asal çarpanlarına tek bir biçimde ayrılır (1 için özel bir duruma gerek yoktur, boş çarpım tanımının olması yeterlidir). Fakat,aritmetiğin temel teoremi bu çarpanların nasıl bulunacağı konusunda bir şey söylemez; sadece var olduklarını söyler.

Genel bir çarpanlara ayırma algoritması verildiğinde, bu algoritmayı tekrar tekrar uygulamak suretiyle herhangi bir tam sayı asal çarpanlarına kadar ayrılabilir. Fakat özel bir amaca yönelik bir çarpanlara ayırma algoritması için bu söz konusu değildir çünkü bu özel algoritma daha ayrıştırmanın sonraki adımlarındaki daha küçük çarpanlara ayırma problemlerinde işe yaramayabilir veya çok yavaş çalışabilir. Mesela deneme bölmesi N = 2 × (2521 − 1) × (2607 − 1) için 10N sayısını hızlı bir biçimde 2 × 5 × N olarak çarpanlara ayırır ama N sayısını hızlı bir biçimde çarpanlarına ayıramaz.

En son gelişmeler

Çarpanlarına ayrılması en zor tam sayılar birbirine yakın uzunluktaki iki büyük asal sayının çarpımı şeklinde olanlar, bir başka deyişle yarıasallardır. Tam da bu yüzden kriptografide bu sayılar kullanılmaktadır. Halihazırda çarpanlarına ayrılmış en büyük yarıasal 232 basamaklı, 768-bitlik bir sayıdır. (12 Aralık 2009)[1] Çeşitli araştırma enstitülerinin ortak çalışmasıyla yapılan bu işlem, iki yıl sürmüş ve tek çekirdekli bir 2.2 GHz AMD Opteron bilgisayarın 2000 yıl çalışmasına denk bir işlem gücüne mal olmuştur. Diğer tüm çarpanlara ayırma rekorları gibi bu rekor da genel sayı cismi eleme (GNFS) algoritmasının son derece optimize bir şekilde yüzlerce makine üzerinde çalıştırılmasıyla tamamlanabilmiştir.

Zorluk ve karmaşıklık

Eğer b bitlik büyük bir sayı yaklaşık aynı uzunlukta iki asal sayının çarpımı ise, yayınlanmış hiçbir algoritma bu sayıyı polinomsal zamanda (yani belli bir k değeri için Yani O(bk) zamanda) çarpanlarına ayıramamaktadır. Tüm pozitif ε değerleri için O((1+ε)b)'den daha hızlı yani üstel-altı zaman algoritmalarsa yayınlamış bulunmaktadır. GNFS algoritmasıyla "b"-bitlik bir yarıasalın çarpanlarına ayrılması için yayınlanmış olan en iyi asimptotik çalışma zamanı,

tür.

Sıradan bir bilgisayar için, GNFS 100 basamaktan daha büyük sayılarda çalışmak üzere yayınlanmış en iyi algoritmadır. Fakat bir kuantum bilgisayarı için, Peter Shor 1994 yılında polinomsal zamanda çözüme ulaşan bir algoritma keşfetmiştir. Eğer gelecekte büyük bir kuantum bilgisayarı inşa edilebilirse bu keşif kriptografi açısından önemli sonuçlar doğuracaktır. Shor algoritması "b"-bitlik bir girdi için sadece O(b3) zaman ve O(b) yer gerektirmektedir. 2001 yılında, 7-kübitlik bir kuantum bilgisayar ilk kez Shor'un algoritmasını çalıştırmış ve 15'i çarpanlarına ayırmıştır.[2]

Çarpanlara ayırma probleminin hangi karmaşıklık sınıfına dahil olduğu incelenirken problemin değişik versiyonlarını ayırt etmek gerekir.

  • Fonksiyon problemi versiyonu: Bir N tam sayısı verildiğinde 1 < d < N olacak şekilde N'yi bölen bir d sayısı bulunuz (veya N'nin asal olduğu sonucuna varınız). Bu problem FNP'de olup FP'de olup olmadığıysa bilinmemektedir. Pratikte uygulamalarda çözülen versiyon, bu versiyondur.
  • Karar problemi versiyonu: 1 ≤ M ≤ N olacak şekilde M ve N tam sayıları verildiğinde, 1 < d < M olacak şekilde öyle bir d sayısı var mıdır ki N'yi bölüyor olsun? Bu versiyon kullanışlıdır çünkü çokça çalışılmış tüm karmaşıklık sınıfları fonksiyon değil karar problemleri üzerinden tanımlanmıştır. Bu, problemin optimizasyon problemleri için sıkça kullanılanlara denk gelen doğal bir karar versiyonudur, çünkü bu versiyon ikisel arama ile birleştirilerek fonksiyon versiyonu da logaritmik sayıda sorgu ile çözülebilir. Çarpanlara ayırma probleminin karar versiyonunun tam olarak hangi karmaşıklık sınıfında yer aldığı bilinmemektedir. Ne var ki hem NP hem de co-NP'de olduğu bilinmektedir. Çünkü asal çarpanlar verildiğinde hem EVET hem de HAYIR cevapları teyit edilebilir. (Çarpanların asallığı AKS asallık testi ile, çarpımlarının N olduğunu da basitçe çarparak kontrol edilebilir.) Aritmetiğin temel teoremince sadece bir çözümün kabul edilebileceği kesindir (sıralı olmaları koşuluyla). Bu da gösterir ki problem hem UP hem de co-UP sınıflarındadır.[3] Problemin BQP'de olduğu Shor algoritması dolayısıyla bilinmektedir. P, NP-complete ve co-NP-complete karmaşıklık sınıflarının üçünde de olmadığı sanılmaktadır. Dolayısıyla NP-intermediate karmaşıklık sınıfında olmaya adaydır. NP-Complete veya co-NP-Complete olduğu gösterildiği takdirde, NP = co-NP olması gerekecektir. Oysa bu son derece beklenmedik bir netice olacağı için çarpanlara ayırma probleminin bu iki sınıfta da olmadığı düşünülmektedir. Çok sayıda insan klasik polinomsal-zaman algoritmalar bulmayı deneyip başaramadıklarından yaygın kanı P sınıfının dışında olduğu yönündedir.

Bunlara karşın ""N" bileşik sayı mıdır?" (veya buna denk olarak ""N" asal sayı mıdır?") karar problemleri "N"'nin çarpanlarını bulmaya nazaran çok daha kolay görünmektedir. Bu karar problemlerinden ilki AKS asallık testi ile N'nin basamak uzunluğu cinsinden polinomsal zamanda çözülebilmektedir. Bununla beraber, çok küçük bir hata payına razı olmak koşuluyla çok hızlı sonuç verebilen çeşitli olasılıksal algoritmalar bulunmaktadır. Asallık testinin kolay oluşu, başlangıcında büyük asal sayılar bulma gerekliliğinden dolayı RSA algoritması için büyük önem arz etmektedir.

Çarpanlara ayırma

Amaca özel

Amaca özel bir çarpanlara ayırma algoritmasının çalışma zamanı, çarpanlara ayrılmaya çalışan sayının veya bilinmeyen çarpanlarından birinin özelliklerine bağlıdır: büyüklük, özel form, vs. Tam olarak çalışma süresinin ne olduğuysa algoritmadan algoritmaya değişir.

Amaca özel algoritmaların önemli bir alt sınıfı "1. Kategori" olarak adlandırılan algoritmalardır ki bunların çalışma süreleri en küçük asal çarpanın büyüklüğüne bağlıdır. Formu bilinmeyen bir tam sayı verildiğinde küçük çarpanları ayıklamak için genellikle bu algoritmalar genel algoritmalardan önce çalıştırılır.[4]

  • Deneme bölmesi
  • Tekerlek çarpanlara ayırma yöntemi
  • Pollard'ın rho algoritması
  • Cebirsel-grup çarpanlara ayırma algoritmaları: Pollard'ın p - 1 algoritması, Williams'ın p + 1 algoritması ve Lenstra eliptik eğri çarpanlara ayırma yöntemi
  • Fermat'ın çarpanlara ayırma metodu
  • Euler'in çarpanlara ayırma metodu
  • Özel sayı cismi eleme yöntemi

Genel amaçlı

Aynı zamanda 2. kategori veya kaşifi Maurice Kraitchik'e atfen Kraitchik ailesi algoritmalar[4] olarak da bilinen genel çarpanlara ayırma algoritmalarının çalışma süreleri sadece çarpanlarına ayrılacak olan sayının büyüklüğüne bağlıdır. RSA sayılarını çarpanlarına ayırmak için bu algoritmalar kullanılır. Genel çarpanlara ayırma algoritmalarının çoğu kareler çakışması metoduna dayalıdır.

  • Dixon algoritması
  • Tekrarlı bölme çarpanlara ayırma metodu (CFRAC)
  • İkinci derece elek metodu
  • Genel sayı cismi eleme metodu
  • Shank'in kare formları çarpanlara ayırma metodu (SQUFOF)

Diğer kayda değer algoritmalar

Sezgisel çalışma süresi

Sayılar teorisinde beklenen çalışma süresi sezgisel olarak, O ve L notasyonu ile ifade edilecek olursa,

olan birçok çarpanlara ayırma algoritması vardır. Bu algoritmalara bazı örnekler eliptik eğri metodu ve ikinci dereceden elek metodudur. Bu şekilde bir diğer algoritma da Schnorr tarafından önerilen sınıf grup ilişkileri metodudur.[5] Bu durum Seysen[6] ve Lenstra[7] tarafından genelleştirilmiş Riemann hipotezi (GRH) ışığında ispatlanmıştır.

Kesin çalışma süresi

Schnorr-Seysen-Lenstra olasılıksal algoritmasının beklenen çalışma süresinin olduğu, Lenstra ve Pomerance[8] tarafından GRH varsayımı yerine çarpanlar kullanılmak suretiyle kesin bir şekilde ispatlanmıştır. Algoritma, GΔ ile gösterilen diskriminant Δ'nın pozitif ikili ikinci dereceden fom sınıf grubunu kullanır. GΔ (a, b, c) gibi aralarında asal tam sayı üçlülerinin kümesidir.

Schnorr-Seysen-Lenstra algoritması

Algoritmanın girdisi, belirli sabit bir değerden büyük, pozitif ve tek bir "n" tam sayısıdır. Bu çarpanlara ayırma algoritmasında, diskriminant Δ, "d" bir pozitif çarpan olmak kaydıyla, Δ= -dn şeklinde "n"'nin bir tam katı olarak seçilir. Algoritma, GΔ'da bir "d" değeri için yeterli düzgün formlarının olduğunu umar. Lenstra ve Pomerance söz konusu "d"'nin seçiminin belirli küçük bir kümeyle sınırlanarak düzgünlüğün garanti edilebileceğini göstermişlerdir.

PΔ ile Kronecker sembolü olan tüm q asal sayılarının kümesini gösterelim. "q" PΔ'da olmak üzere GΔ'nın bir üreteç ve asal form fq kümelerini oluşturmak kaydıyla, üreteçler ve fq arasında bir bağıntı dizisi üretilir. "q"'nun büyüklüğü bir değeri için ile sınırlandırılabilir. Kullanılacak olan bağıntı, GΔ'nın tarafsız elemanına eşit olan üsler çarpımı arasındaki bir bağıntıdır. Bu bağıntılar,, aslında GΔ'nın kertesi 2'yi bölen bir elemanı olan, GΔ'nın çokanlamlı bir formunu inşa etmek için kullanılacaktır. Δ'nın ilişkin çarpanlara ayrımını hesaplayarak ve bir EBOB alarak, bu çokanlamlı form "n"'nin tam bir asal çarpanlara ayrımlanmasını verir. Bu algoritmanın ana basamakları şunlardır:

Çarpanlarına ayrılacak sayı "n" olsun.

  1. d bir çarpan ve Δ bir ikinci dereceden formun negatif diskriminantı olmak koşuluyla, Δ, -dn şeklinde negatif bir tam sayı olsun.
  2. Bir için, ilk t asal sayıyı alalım.
  3. olmak üzere, , GΔ'nın rassal bir asal formu olsun.
  4. GΔ'nın bir X üretici kümesini bul.
  5. "X" kümesi ve {fq : qPΔ} arasında şunu sağlayan bir bağıntı dizisi topla:
  6. Δ = -4a.c or a(a - 4c) or (b - 2a).(b + 2a) olmak kaydıyla Δ'nın en büyük tek böleninin aralarında asal çarpanlarına ayrımını elde etmek için, derecesi 2'yi bölen bir fGΔ elamanı olan bir "(a, b, c)" çokanlamlı formu oluştur.
  7. Eğer çokanlamlı form "n"'nin bir çarpanlara ayrımını verirse dur, aksi takdirde "n"'nin bir çarpanlara ayrımı bulunana dek başka bir çokanlamlı form bul. Kullanışsız çokanlamlı formların üretimini en baştan engellemek için G(Δ)'nın S2(Δ) 2-Sylow grubunu inşa et.

Herhangi bir pozitif tam sayıyı çarpanlarına ayıran bir algoritma elde edebilmek için bu algoritmaya deneme bölmesi, Jacobi toplamı testi gibi birkaç basamak daha eklemek gerekmektedir.

Beklenen çalışma süresi

Verildiği şekliyle algoritma rassal seçimler yapması dolayısıyla olasılıksal bir algoritmadır. Beklenen çalışma süresi en çok 'dir.[8]

Ayrıca bakınız

  • Bir pozitif tam sayının kanonik gösterimi

Kaynakça

  1. ^ a b Kleinjung; ve diğerleri. (18 Şubat 2010). "Factorization of a 768-bit RSA modulus" (PDF). IACR. 31 Mart 2010 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 9 Ağustos 2010. 
  2. ^ LIEVEN M. K. VANDERSYPEN; ve diğerleri. (27 Aralık 2007). "NMR quantum computing: Realizing Shor's algorithm". Nature. 30 Temmuz 2010 tarihinde kaynağından arşivlendi. Erişim tarihi: 9 Ağustos 2010. 
  3. ^ Lance Fortnow (13 Eylül 2002). "Computational Complexity Blog: Complexity Class of the Week: Factoring". 19 Kasım 2008 tarihinde kaynağından arşivlendi. Erişim tarihi: 23 Mayıs 2012. 
  4. ^ a b David Bressoud ve Stan Wagon (2000). A Course in Computational Number Theory. Key College Publishing/Springer. ss. 168-69. ISBN 978-1-930190-10-8. 
  5. ^ Schnorr, Claus P. (1982). "Refined analysis and improvements on some factoring algorithms". Journal of Algorithms. 3 (2). ss. 101-127. doi:10.1016/0196-6774(82)90012-8. 
  6. ^ Seysen, Martin (1987). "A probabilistic factorization algorithm with quadratic forms of negative discriminant". Mathematics of Computation. 48 (178). ss. 757-780. doi:10.1090/S0025-5718-1987-0878705-X. 
  7. ^ Lenstra, Arjen K (1988). "Fast and rigorous factorization under the generalized Riemann hypothesis". Indagationes Mathematicae. Cilt 50. ss. 443-454. 
  8. ^ a b H.W. Lenstra, and C. Pomerance; Pomerance, Carl (Temmuz 1992). "A Rigorous Time Bound for Factoring Integers" (PDF). Journal of the American Mathematical Society. 5 (3). ss. 483-516. doi:10.1090/S0894-0347-1992-1137100-0. 

Konuyla ilgili yayınlar

Dış bağlantılar

Şablon:Sayılar teorisi algoritmaları

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Aritmetiğin temel teoremi</span>

Matematik'te aritmetiğin temel teoremi, aynı zamanda benzersiz çarpanlara ayırma teoremi ve asal çarpanlara ayırma teoremi olarak da adlandırılır, şunu belirtir: 1'den büyük her tamsayı, benzersiz bir şekilde asal sayıların üslerinin çarpımı olarak gösterilebilir.

<span class="mw-page-title-main">Asal sayı</span> sadece iki pozitif tam sayı böleni olan doğal sayılardır

Bir asal sayı, yalnızca 1'den büyük olup kendisinden küçük iki doğal sayının çarpımı olarak ifade edilemeyen bir doğal sayıdır. 1'den büyük ve asal olmayan doğal sayılara bileşik sayı adı verilir. Örneğin, 5 bir asal sayıdır çünkü onu bir çarpım olarak ifade etmenin mümkün olan yolları, 1 × 5 veya 5 × 1, yalnızca 5 sayısını içermektedir. Ancak, 4 bir bileşik sayıdır çünkü bu, her iki sayının da 4'ten küçük olduğu bir çarpım şeklindedir. Asal sayılar, aritmetiğin temel teoreminden ötürü sayı teorisi alanında merkezi öneme sahiptir: 1'den büyük her doğal sayı, ya bir asal sayıdır ya da asal sayıların çarpımı olarak, sıralamalarından bağımsız bir şekilde, benzersiz olarak çarpanlarına ayrılabilir.

<span class="mw-page-title-main">İkiz asallar</span>

İkiz asallar, aralarındaki fark 2 olan asal sayılar. Örneğin 3-5, 5-7, 11-13 ikiz asallardır. 2-3 çifti hariç iki asal sayı arasındaki fark da zaten en az 2 olabilir.

P harfi "polynomial", NP harfleri ise "non-deterministic polynomial" ifadelerini temsil eder, Türkçe karşılıkları "polinom" ve "belirleyici olmayan polinom"dur. "P eşittir NP?" ise hesaplama teorisi'nin en temel ve meşhur problemidir.

RSA, güvenliği tam sayıları çarpanlarına ayırmanın algoritmik zorluğuna dayanan bir tür açık anahtarlı şifreleme yöntemidir. 1978’de Ron Rivest, Adi Shamir ve Leonard Adleman tarafından bulunmuştur. Bir RSA kullanıcısı iki büyük asal sayının çarpımını üretir ve seçtiği diğer bir değerle birlikte ortak anahtar olarak ilan eder. Seçilen asal çarpanları ise saklar. Ortak anahtarı kullanan biri herhangi bir mesajı şifreleyebilir, ancak şu anki yöntemlerle eğer ortak anahtar yeterince büyükse sadece asal çarpanları bilen kişi bu mesajı çözebilir. RSA şifrelemeyi kırmanın çarpanlara ayırma problemini kırmak kadar zor olup olmadığı hala kesinleşmemiş bir problemdir.

<span class="mw-page-title-main">Totient</span>

Totient sayılar teorisinde, bir tam sayının o sayıdan daha küçük ve o sayı ile aralarında asal olan sayma sayı sayısını belirten fonksiyondur. Genellikle Euler Totient ya da Euler'in Totienti olarak adlandırılan Totient, İsviçreli matematikçi Leonhard Euler tarafından yaratılmıştır. Totient fonksiyonu, Yunan harflerinden ile simgelendiği için Fi fonksiyonu olarak da anılabilir.

Aşağıdaki tarihsel sıralama genel olarak algoritmaların ilk kökenlerinden başlayarak gelişimlerini ana hatlarıyla gösterir.

Rabin şifreleme sistemi, Rabin kriptoloji veya Rabin kriptosistemi, güvenliği RSA'daki gibi tam sayı çarpanlarına ayırmanın zorluğu üzerine kurgulanmış olan asimetrik bir kriptografik tekniktir. Bununla birlikte, Rabin kriptosisteminin avantajı, saldırgan tam sayıları verimli bir şekilde çarpanlarına ayıramadığı sürece, seçilmiş bir düz metin saldırısına karşı hesaplama açısından güvenli olduğu matematiksel olarak kanıtlanmıştır, oysa RSA için bilinen böyle bir kanıt yoktur. Rabin fonksiyonunun her çıktısının dört olası girdiden herhangi biri tarafından üretilebilmesi dezavantajı; her çıktı bir şifreli metinse, olası dört girdiden hangisinin gerçek düz metin olduğunu belirlemek için şifre çözmede ekstra karmaşıklık gerekir.

Matematikte, özellikle soyut cebir ve uygulamalarında, ayrık logaritma, genel logaritmanın grup kuramındaki karşılığıdır. Genel olarak bakıldığında, loga(b) ifadesi, ax = b ifadesinin gerçel sayılar kümesi içindeki çözümlerine karşılık gelir. Benzer olarak, g ve h sonlu devirli grup G'nin elemanları olduğunda, gx = h ifadesinin çözümü olan x sonuçlarına h'nin g tabanındaki ayrık logaritması denir.

<span class="mw-page-title-main">Çarpanlara ayırma</span>

Çarpanlara ayırma, bir polinomun, tam sayının ya da matrisin kendisini oluşturan bileşenlerin çarpımı şeklinde yazılmasıdır. Örneğin 15 sayısı 3 ve 5 asal sayılarının çarpımı şeklinde yazılabilir: 3 × 5 ya da x2 − 4 polinomu (x − 2)(x + 2) şeklinde yazılabilir.

Goldwasser–Micali (GM) kriptosistemi 1982 yılında Shafi Goldwasser ve Silvio Micali tarafından geliştirilmiş bir asimetrik anahtar şifreleme algoritmasıdır. GM standart kriptografik varsayımlar altında güvenliği kanıtlanmış ilk probabilistik açık anahtar şifreleme yöntemidir. Bununla birlikte başlangıç düz metinden yüzlerce kez daha geniş olan şifreli metinler olduğundan verimli bir kriptosistem değildir. Kriptosistemin güvenlik özelliğini kanıtlamak için Shafi Goldwasser ve Silvio Micali anlamsal güvenliğin geniş alanda kullanılan bir tanımını önerdiler.

Okamoto–Uchiyama kriptosistemi, 1998'de T. Okamoto ve S. Uchiyama tarafından bulundu. Sistem kümesinde çalışır, n p2q ya eşittir ve p ve q büyük asal sayılardır.

<span class="mw-page-title-main">Jacobi sembolü</span>

Jacobi sembolü Legendre sembolünün bir genellemesidir. 1837 yılında Jacobi tarafından tanıtılan bu teori, modüler aritmetik ve sayılar teorisinin diğer dallarındandır ama ana kullanımı hesaplamada sayılar teorisi, özellikle asallık testi ve tam sayıları çarpanlara ayırma olarak kriptografide oldukça önemlidir.

Sayı kuramında, bir doğal sayının k tam asal çarpanları sayılabiliyorsa, buna k asalımsı veya "k hemen hemen asal" denir. Daha genel bir ifade ile, ancak ve ancak Ω(n) = k ise n sayısı, k asalımsıdır. Burada, Ω(n), n asal çarpanlarının toplamıdır:

'dir.

Sayı kuramında yarı asal sayılar, iki tane asal sayının çarpımı şeklinde yazılabilen pozitif tam sayılardır. Dolayısıyla ya bir asal sayının karesidirler ya da dört tane farklı pozitif bölene sahiptirler. Buna bağlı olarak, dört tane pozitif bölene sahip her sayı yarı asal olmak zorunda değildir. Bir asal sayının karesi olmayan asal sayılara ayrık asal sayılar denir. Bir yarı asal sayı n için Ω(n) tanım gereği ikiye eşittir. Yarı asallar RSA gibi kriptografi sistemlerinde kullanılır.

<span class="mw-page-title-main">Eliptik eğri kriptografisi</span>

Eliptik Eğri Kriptolojisi, sonlu cisimler üzerindeki eliptik eğrilerin cebirsel topolojisine dayanan bir açık anahtar şifrelemesidir. Eliptik Eğri Kriptolojisi, diğer şifrelemeler göre daha küçük anahtar boyuna ihtiyaç duyar.

Schmidt-Samoa şifreleme, Alman araştırmacı Katja Schmidt-Samoa tarafından 2005’te oluşturulan asimetrik kriptografi yöntemidir. Bu şifrelemenin güvenilirliği Rabin'deki gibi çarpanlara ayırma probleminin zorluğuna dayanmaktadır. Bu algoritma, Rabin'in aksine şifreleme hızı pahasına, şifre çözmede belirsizlik oluşturmamaktadır.

Bu, Wikipedia'da yer alan sayı teorisi konularıyla ilgili sayfaların bir listesidir.

Möbius fonksiyonu , 1832 yılında Alman matematikçi August Ferdinand Möbius tarafından ortaya atılan çarpımsal bir fonksiyondur. Temel ve analitik sayılar teorisi'nde çoğunlukla kullanılan fonksiyon, genellikle Möbius inversiyon formülü'nün bir parçası olarak görülür. Gian-Carlo Rota'nın 1960'lı yıllardaki çalışmaları sonucunda ile gösterilen Möbius fonksiyonunun genellemeleri kombinatoriğe tanıtılmıştır.