İçeriğe atla

Asalımsı

Sayı kuramında, bir doğal sayının k tam asal çarpanları sayılabiliyorsa, buna k asalımsı veya "k hemen hemen asal" denir. Daha genel bir ifade ile, ancak ve ancak Ω(n) = k ise n sayısı, k asalımsıdır. Burada, Ω(n), n asal çarpanlarının toplamıdır:

'dir.

Bir doğal sayı 1 asalımsı ise ancak ve ancak asal sayıdır ve 2 asalımsı ise ancak ve ancak yarı asaldır. k asalımsıların kümesi genellikle, Pk ile sembolize edilir. En küçük k asalımsı, 2k'dır. İlk k asalımsılar şunlardır:

kk asalımsı OEIS dizisi
12, 3, 5, 7, 11, 13, 17, 19, … A000040
24, 6, 9, 10, 14, 15, 21, 22, … A001358
38, 12, 18, 20, 27, 28, 30, … A014612
416, 24, 36, 40, 54, 56, 60, … A014613
532, 48, 72, 80, 108, 112, … A014614
664, 96, 144, 160, 216, 224, … A046306
7128, 192, 288, 320, 432, 448, … A046308
8256, 384, 576, 640, 864, 896, … A046310
9512, 768, 1152, 1280, 1728, … A046312
101024, 1536, 2304, 2560, … A046314
112048, 3072, 4608, 5120, … A069272
124096, 6144, 9216, 10240, … A069273
138192, 12288, 18432, 20480, … A069274
1416384, 24576, 36864, 40960, … A069275
1532768, 49152, 73728, 81920, … A069276
1665536, 98304, 147456, … A069277
17131072, 196608, 294912, … A069278
18262144, 393216, 589824, … A069279
19524288, 786432, 1179648, … A069280
201048576, 1572864, 2359296, … A069281

πk(n) pozitif tam sayısı, n den küçük eşittir. En fazla k asal bölenleri şunlar sınırlandırılır:

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Aritmetiğin temel teoremi</span>

Matematik'te aritmetiğin temel teoremi, aynı zamanda benzersiz çarpanlara ayırma teoremi ve asal çarpanlara ayırma teoremi olarak da adlandırılır, şunu belirtir: 1'den büyük her tamsayı, benzersiz bir şekilde asal sayıların üslerinin çarpımı olarak gösterilebilir.

<span class="mw-page-title-main">Asal sayı</span> sadece iki pozitif tam sayı böleni olan doğal sayılardır

Bir asal sayı, yalnızca 1'den büyük olup kendisinden küçük iki doğal sayının çarpımı olarak ifade edilemeyen bir doğal sayıdır. 1'den büyük ve asal olmayan doğal sayılara bileşik sayı adı verilir. Örneğin, 5 bir asal sayıdır çünkü onu bir çarpım olarak ifade etmenin mümkün olan yolları, 1 × 5 veya 5 × 1, yalnızca 5 sayısını içermektedir. Ancak, 4 bir bileşik sayıdır çünkü bu, her iki sayının da 4'ten küçük olduğu bir çarpım şeklindedir. Asal sayılar, aritmetiğin temel teoreminden ötürü sayı teorisi alanında merkezi öneme sahiptir: 1'den büyük her doğal sayı, ya bir asal sayıdır ya da asal sayıların çarpımı olarak, sıralamalarından bağımsız bir şekilde, benzersiz olarak çarpanlarına ayrılabilir.

<span class="mw-page-title-main">İkiz asallar</span>

İkiz asallar, aralarındaki fark 2 olan asal sayılar. Örneğin 3-5, 5-7, 11-13 ikiz asallardır. 2-3 çifti hariç iki asal sayı arasındaki fark da zaten en az 2 olabilir.

2 (iki) bir sayı, rakam ve gliftir. 1'den sonraki ve 3'ten önceki doğal sayıdır. En küçük ve hatta yegâne çift asal sayıdır. Bir dualitenin temelini oluşturduğundan, birçok kültürde dini ve manevi öneme sahiptir.

<span class="mw-page-title-main">Rasyonel sayılar</span>

Rasyonel sayılar, iki tam sayı arasındaki oranı temsil eden, bir pay p ve sıfırdan farklı bir payda q olmak üzere, bir bölme işlemi veya kesir formunda ifade edilebilen sayıları tanımlar. Örneğin, rasyonel bir sayı olarak kabul edilir, bu kapsamda her tam sayı da rasyonel sayılar kategorisindedir. Rasyonel sayılar kümesi, çoğunlukla kalın harf biçimindeki Q veya karatahta vurgusu kullanılarak şeklinde ifade edilir.

Planck sabiti (h), bir fizik sabitidir ve kuantum mekaniğindeki aksiyonum kuantumu için kullanılır. Değeri h= 6.62607015×10−34 J⋅s' dir. Planck sabiti daha önceleri bir Fotonun enerjisi (E) ile elektromanyetik dalgasının frekansı (ν) arasında bir orantı idi. Enerji ile frekans arasındaki bu ilişki Planck ilişkisi veya Planck formülü olarak adlandırılır:

Genel fonksiyonlarda limit hesaplamak için bazı pratik kurallar verilmiştir. Formüllerdeki a ve b sayılarının x'e göre sabit olduğu düşünülecektir

<span class="mw-page-title-main">Totient</span>

Totient sayılar teorisinde, bir tam sayının o sayıdan daha küçük ve o sayı ile aralarında asal olan sayma sayı sayısını belirten fonksiyondur. Genellikle Euler Totient ya da Euler'in Totienti olarak adlandırılan Totient, İsviçreli matematikçi Leonhard Euler tarafından yaratılmıştır. Totient fonksiyonu, Yunan harflerinden ile simgelendiği için Fi fonksiyonu olarak da anılabilir.

<span class="mw-page-title-main">Dizi</span> aynı tip elemanların sıralı listesi (sonlu veya sonsuz)

Dizi, bir sıralı listedir. Bir küme gibi, ögelerden oluşur. Sıralı ögelerin sayısına dizinin uzunluğu denir. Kümenin aksine sıralı ve aynı ögeler dizide farklı konumlarda birkaç kez bulunabilir. Tam olarak bir dizi, tanım kümesi sayılabilen toplam sıralı kümelerden oluşan bir fonksiyon olarak tanımlanabilir. Örneğin doğal sayılar gibi. Diziler bu örnekte olduğu gibi sonlu olabilir. Ya da tüm çift pozitif tam sayılar gibi sonsuz olabilir.

abc sanısı veya abc konjektürü sayılar teorisindeki bir sanı yani konjektürdür. 1985'te Joseph Oesterlé ve David Masser tarafından ortaya atılmıştır. Biri diğer ikisinin toplamı şeklinde ifade edilen üç tam sayının özellikleri üzerine kurulmuştur. Problemi çözmek için açık bir strateji bulunmadığı halde, sanı bazı ilginç sonuçları sayesinde tanınmıştır.

Matematikte, birkaç fonksiyon ya da fonksiyon gruplarının kendi isimleri yeterli öneme layıktır. Bu makaleler fonksiyonları açıklamak için olan daha ayrıntılı olarak gösteren bir listedir. İstatistik dışı ve matematiksel fizik gelişmeleri sonucu özel fonksiyonlar büyük bir teori olmuştur. Modern bir, soyut incelik fonksiyon uzayıları geniş karşılaştırma görünümü, sonsuz-boyutlu ve 'isimsiz' fonksiyonlar içindeki ve simetri ya da ilişki harmonik analiz ve grup temsilileri gibi özellikler ile özel fonksiyonlar ile seçilmiştir.

Sayı teorisinde, asal çarpanlara ayırma bir bileşik sayının, çarpıldıklarında yine aynı sayıyı verecek şekilde, bir ve kendisi dışındaki bölenlerine ayrılmasıdır.

<span class="mw-page-title-main">Çarpanlara ayırma</span>

Çarpanlara ayırma, bir polinomun, tam sayının ya da matrisin kendisini oluşturan bileşenlerin çarpımı şeklinde yazılmasıdır. Örneğin 15 sayısı 3 ve 5 asal sayılarının çarpımı şeklinde yazılabilir: 3 × 5 ya da x2 − 4 polinomu (x − 2)(x + 2) şeklinde yazılabilir.

<span class="mw-page-title-main">Jacobi sembolü</span>

Jacobi sembolü Legendre sembolünün bir genellemesidir. 1837 yılında Jacobi tarafından tanıtılan bu teori, modüler aritmetik ve sayılar teorisinin diğer dallarındandır ama ana kullanımı hesaplamada sayılar teorisi, özellikle asallık testi ve tam sayıları çarpanlara ayırma olarak kriptografide oldukça önemlidir.

Matematikte, asal kuvvet, bir asal sayının pozitif tam sayı kuvvetidir. Örneğin: 5 = 51, 9 = 32 ve 16 = 24, asal kuvvetlerdir. 6 = 2 × 3, 15 = 3 × 5 ve 36 = 62 = 22 × 32 olduğundan dolayı asal kuvvet değildir.

Sayı kuramında yarı asal sayılar, iki tane asal sayının çarpımı şeklinde yazılabilen pozitif tam sayılardır. Dolayısıyla ya bir asal sayının karesidirler ya da dört tane farklı pozitif bölene sahiptirler. Buna bağlı olarak, dört tane pozitif bölene sahip her sayı yarı asal olmak zorunda değildir. Bir asal sayının karesi olmayan asal sayılara ayrık asal sayılar denir. Bir yarı asal sayı n için Ω(n) tanım gereği ikiye eşittir. Yarı asallar RSA gibi kriptografi sistemlerinde kullanılır.

<span class="mw-page-title-main">Primoriyel</span>

Primoriyel, matematikte ve bilhassa sayı teorisinde doğal sayılardan doğal sayılara tanımlanmış faktöriyele benzer şekilde art arda pozitif tam sayıları çarpacağı yerde sadece asal sayıları çarpar.

Öklid'in teoremi, sayılar teorisinde temel bir ifade olup sonsuz sayıda asal sayı olduğunu ileri sürer. Teoremin iyi bilinen farklı ispatları bulunmaktadır.

Sayılar teorisi'nde asal omega fonksiyonları ve , doğal sayısının asal çarpanlarının sayısını hesaplamak için kullanılır. fonksiyonu doğal sayısının birbirinden farklı asal çarpanlarının sayısını hesaplarken fonksiyonu sayının toplam asal çarpan sayısını hesaplar. Yani birbirinden farklı asal sayıları için ise ve olur.

Möbius fonksiyonu , 1832 yılında Alman matematikçi August Ferdinand Möbius tarafından ortaya atılan çarpımsal bir fonksiyondur. Temel ve analitik sayılar teorisi'nde çoğunlukla kullanılan fonksiyon, genellikle Möbius inversiyon formülü'nün bir parçası olarak görülür. Gian-Carlo Rota'nın 1960'lı yıllardaki çalışmaları sonucunda ile gösterilen Möbius fonksiyonunun genellemeleri kombinatoriğe tanıtılmıştır.