İçeriğe atla

Artımlı kodlayıcı

Delik açıklığına göre milli döner artımlı kodlayıcı

Artımlı kodlayıcı (enkoder), cihaz hareket ettirildiğinde iki A ve B çıkış sinyalli darbeler veren, doğrusal veya döner elektromekanik bir cihazdır.[1] "A" ve "B" sinyalleri birlikte hareketin hem oluşumunu hem de yönünü gösterir. Çoğu artımlı kodlayıcının ek bir çıkış sinyali vardır ve bu sinyale, kodlayıcının belirli bir referans konumunda olduğunu gösteren, genelde "indeks"[2] veya "Z"[3] denilir. Ayrıca bazı kodlayıcılar, rulman arızası veya sensör arızası gibi dahili arızayı gösteren durum çıkışı ("alarm")[4] verir.

Mutlak kodlayıcı'dan farklı olarak, artımlı kodlayıcı mutlak konumu vermez, yalnızca konumdaki değişiklikleri[3] ve bildirilen her konum değişikliği için hareket yönünü bildirir. Sonuçta, belirli bir anda mutlak konumu bulmak için, kodlayıcı sinyallerini artımlı kodlayıcı arabirimine göndermek gereklidir, bu ise kodlayıcının mutlak konum değerini "izler" ve raporlar.

Artımlı kodlayıcılar konum değişikliklerini neredeyse anında bildirir, bu ise yüksek hızlı mekanizmaların hareketlerini neredeyse gerçek zamanlı olarak izlemeye olanak tanır. Bu nedenle artımlı kodlayıcılar, konum ve hızın hassas ölçümünü ve kontrolunu gerektiren uygulamalarda kullanılır.

Dörtlü çıktılar

Dördün içinde iki kare dalga. Hareket yönü, bu durumda negatif olan A-B faz farkının işareti ile gösterilir çünkü A, B'yi takip eder.

Artımlı bir kodlayıcı, A ve B çıkış sinyallerini üretmek için dörtlü kodlayıcı kullanır. A ve B çıkışlarından çıkan darbeler karesel olarak kodlanmıştır, yani artımlı kodlayıcı sabit bir hızda hareket ettiğinde, A ve B dalga biçimleri kare dalgadır ve A ve B arasında 90 derece faz farkı vardır.[2]

Herhangi bir zamanda, "A" ve "B" sinyalleri arasındaki faz farkı kodlayıcının hareket yönüne bağlı olarak pozitif veya negatiftir. Döner kodlayıcıda faz farkı, cihaz tasarımına bağlı olarak saat yönünde dönüş için +90° ve saat yönünün tersine dönüş için -90° veya tam tersidir.

A&B (Clock & Data) signals from an oscillating shaft
Salınımlı bir milden gelen dörtlü sinyaller. 'Saat' sinyalinin yükselen kenarındaki 'Veri'den saat yönünde yönü okuyun. Mil yön değiştirdikçe, darbe genişliklerini ve fazını değiştirerek yavaşlar ve tersine döner.

A veya B çıkışındaki darbe frekansı, kodlayıcının hızıyla (konum değişim oranıyla) doğru orantılıdır; yüksek frekanslar hızlı hareketi, alçak frekanslar ise daha yavaş hızı gösterir.[1] Kodlayıcı hareketsizken “A” ve “B” üzerinde statik, değişmeyen sinyaller verir.

Döner kodlayıcıda frekans, kodlayıcının mil dönüş hızını ve doğrusal kodlayıcılarda ise frekans doğrusal gidiş hızını verir.

Dörtlü kodlayıcı algılama mekanizmalarının kavramsal çizimleri

Çözünürlük

Artımlı kodlayıcının çözünürlüğü, ürettiği konum bilgi hassasiyetinin ölçüsüdür. Kodlayıcı çözünürlüğü genelde birim yer değiştirme başına A (veya B) darbe sayısı veya eşdeğeri birim yer değiştirme başına A (veya B) kare dalga döngü sayısı cinsinden belirtilir. Döner kodlayıcılarda çözünürlük her devir başına düşen darbe sayısı (PPR) veya her devir devir başına düşen döngü sayısı (CPR)[3] olarak belirtilirken, doğrusal kodlayıcı çözünürlüğü belirli bir doğrusal dönüş mesafesine karşılık gelen darbe sayısı cinsinden verilir (örneğin mm başına 1000 darbe gibi).

Bu, kodlayıcının algılayabileceği en küçük konum değişikliği kodlayıcının ölçüm çözünürlüğünün aksinedir. A veya B üzerindeki her sinyal kenarı, algılanan konum değişikliğini gösterir. A (veya B) üzerindeki her kare dalga döngüsü dört sinyal kenarını kapsadığından (A yükselen, B yükselen, düşen A ve düşen B), kodlayıcının ölçüm çözünürlüğü tam bir A veya B çıktı döngüsü tarafından temsil edilen yer değiştirmenin dörtte birine eşittir. Örneğin 1000 darbe/mm doğrusal kodlayıcının 1 mm/ 1000 döngü= 1 μm döngü başına ölçüm çözünürlüğü vardır dolayısıyla bu kodlayıcının çözünürlüğü 1 μm/ 4 = 250 nm'dir.

Simetri ve faz

Artımlı kodlayıcılar, sensör hatalarından dolayı simetri ve faz hataları yapar

Sabit hızda hareket ederken, ideal artımlı bir kodlayıcı A ve B arasında tam olarak 90°'lik bir faz farkıyla A ve B üzerinde tam kare dalgalar verir (yani darbeler tam olarak 180° genişliğindedir). Ancak gerçek kodlayıcılarda sensör kusurları nedeniyle darbe genişlikleri hiçbir zaman tam olarak 180° değildir ve faz farkı hiçbir zaman tam olarak 90° değildir. Ayrıca, A ve B darbe genişlikleri bir çevrimden diğerine (ve birbirine göre) değişir ve faz farkı her A ve B sinyal kenarında değişir. Sonuçta hem darbe genişliği hem de faz farkı bir dizi değer üzerinde değişir.

Herhangi bir kodlayıcı darbe genişliği ve faz farkı aralıkları sırasıyla "simetri" ve "faz" özellikleriyle tanımlanır. Örneğin, simetrisi 180° ±25° olarak belirtilen bir kodlayıcıda, her çıkış darbesinin genişliğinin en az 155° ve en fazla 205° olması garanti edilir. Benzer şekilde, 90° ±20° olarak belirtilen faz ile her A veya B kenarındaki faz farkı en az 70° ve 110°'den fazla olmaz.

Sinyal türleri

Artımlı kodlayıcılar, çıkış sinyallerini sürmek (iletmek) için çeşitli elektronik devre tipleri kullanır ve üreticiler genellikle çeşitli sürücü tiplerinden herhangi biriyle belirli bir kodlayıcı modeli yapar. Çok bulunan sürücü tipleri açık toplayıcı (kollektör), mekanik, itme-çekme ve diferansiyel RS-422'dir.

Açık toplayıcı

Bir açık toplayıcı sürücünün şematik diyagramı. Çıkış pull-up direnci bazı kodlayıcılarda kendiliğinden vardır; kodlayıcıda pull-up direnci yoksa harici bir direnç gereklidir.

Açık toplayıcı sürücüler (NPN transistörü veya n tipi MOSFET kullanan açık tahliye sürücülerini kullanarak), geniş sinyal voltaj aralığında çalışmaya imkan verir ve çıkış akımını oldukça azaltabilir. Bu özellikleri nedeniyle açık toplayıcı sürücülerini, akım döngülerini, optokuplörleri ve fiber optik vericileri sürmede yararlıdır.

Akım kaynağı olmadığından açık toplayıcı sürücü çıkışı, pull-up direnci aracılığıyla pozitif bir DC gerilimine bağlanmalıdır. Bazı kodlayıcıların bu amaç için içinde kendi dirençleri vardır; pull-up direnci olmayan diğerleri harici bir pull-up direncine gerek duyar. İkinci durumda direnç, gürültü bağışıklığını iyileştirmek için genellikle kodlayıcı arabirim yakınına konulur.

Kodlayıcının yüksek seviyeli mantık sinyal voltajı, pull-up direncine uygulanan voltajla belirlenir (şemada VOH), düşük seviye çıkış akımı ise sinyal voltajı ve yük direnci (pull-up direnci dahil) ikilisince belirlenir. Sürücü düşük seviyeden yüksek mantık seviyesine geçtiğinde, yük direnci ve devre kapasitansı, sinyalin yükseliş süresini uzatan alçak-geçiren filtre oluşturmak için birlikte çalışırlar ve böylece sürücünün maksimum frekans gücü sınırlanır. Bu yüzden, açık toplayıcı sürücüler kodlayıcı yüksek frekanslar vereceğinde genellikle kullanılmaz.

Mekanik işlemi

PCB'ye lehimlenmiş döner bir mekanik artımlı kodlayıcı

Mekanik (veya kontak)[5] artımlı kodlayıcılar, doğrudan A ve B çıkış sinyallerini oluşturmak için kayan elektrik kontakları kullanır.[2] Genelde, kontaklar kapalıyken sinyal toprağına elektriksel olarak bağlanır böylece çıkışlar düşük "sürülür", bu ise onları açık toplayıcı sürücülerin mekanik eşdeğeri yapar ve bu nedenle aynı sinyal koşullandırma gereksinimlerine tabidir (yani harici pull-up direnci).

Maksimum çıkış frekansı, açık toplayıcı çıkışlarını etkileyen aynı faktörlerle sınırlıdır ve kodlayıcı arayüzü tarafından filtrelenmesi gereken kontak sıçraması ve mekanik kontakların çalışma hızı ile sınırlıdır. Bu nedenle mekanik kodlayıcılar yüksek frekans çalışması için uygun değildir. Ayrıca kontaklar normal çalışmada mekanik olarak aşınır ve bu cihaz ömrünü sınırlar. Mekanik kodlayıcılar dahili, aktif elektronik devreleri olmadığından nispeten ucuzdur. Bu özellikleri nedeniyle mekanik kodlayıcılar, hafif görevler ve alçak frekanslı uygulamalar için uygundur.

İt-çek

İt-çek (Push-pull) çıkışları (örneğin Transistör–transistör mantığı, TTL) genellikle mantık devresine doğrudan arayüz için kullanılır. Bunlar, kodlayıcı ve arabirimin birbirine yakın yerleştirildiği (örneğin, baskılı devre iletkenleri veya kısa, korumalı kablo hatları aracılığıyla birbirine bağlı) ve ortak güç kaynağından güç alındığı böylece elektrik alanlarına, toprak döngülerine ve sinyalleri ve dolayısıyla konum izlemeyi bozabilecek veya daha da kötüsü kodlayıcı arayüzüne zarar verebilecek iletim hattı etkilerine maruz kalmanın önlendiği uygulamalar için çok uygundur.

Diferansiyel çifti

Artımlı kodlayıcı'dan diferansiyel çıkış dalga biçimleri

Diferansiyel RS-422 sinyalleme, genelde kodlayıcı yüksek frekanslar vereceğinde veya kodlayıcı arayüzünden uzakta bulunduğunda,[5][6] veya kodlayıcı sinyallerinin elektrik alanlarına veya ortak mod voltajlarına maruz kalabileceği durumlarda[5] veya arayüzün kodlayıcı ile arayüz arasındaki bağlantı sorunlarını belirlemesi gerektiğinde tercih edilir. Koordinat ölçüm makineleri, CNC makineleri, endüstriyel robot, fabrika otomasyonu ve uçak ve uzay gemisi simülatörlerinde kullanılan hareket platformları bunlara örnek verilebilir.

RS-422 çıkışları kullanıldığında, kodlayıcı her mantık çıkışı için bir diferansiyel iletken çifti sağlar; örneğin, "A" ve "/A", kodlayıcının "A" mantık çıkışını içeren aktif-yüksek ve aktif-düşük diferansiyel çifti için kullanılan tanımlamalardır. Sonuçta, kodlayıcı arayüzü, gelen RS-422 çiftlerini tek uçlu mantığa dönüştürmek için RS-422 hat alıcıları sağlamalıdır.[5]

Ana uygulamalar

Konum takibi

Artımlı kodlayıcılar, mekanik cihazların fiziksel konumlarını izlemek için kullanılır. Artımlı kodlayıcı, izlenecek cihaza mekanik olarak bağlanmıştır, böylece cihaz hareket ettikçe çıkış sinyalleri değişir. Örnekler: Mekanik bilgisayar fareleri ve iztoplarının topları, elektronik ekipmandaki kontrol düğmeleri ve radar antenlerindeki dönen miller.

Artımlı bir kodlayıcı takip etmez ve çıkışları mevcut kodlayıcı konumunu göstermez; sadece konumdaki artımlı değişiklikleri bildirir.[3] Sonuçta herhangi bir anda kodlayıcı konumunu belirlemek için, konumu "izleyecek" harici elektronik devreler kullanmak gerekir. Artımlı kodlayıcı arabirimi olarak bilinen bu harici devre, artımlı konum değişikliklerini sayarak konumu izler.

Artımlı konum değişikliğinin her raporunu aldığından ("A" veya "B" sinyalinin geçişi ile gösterilir), kodlayıcı arayüzü A ve B arasındaki faz ilişkisini dikkate alır ve faz farkının işaretine bağlı olarak yukarı veya aşağı sayar. Kümülatif "sayımların" değeri, izleme başladığından beri kat edilen mesafeyi gösterir. Bu mekanizma, çift yönlü uygulamalarda doğru konum takibi sağlar ve tek yönlü uygulamalarda AB kod geçişi yakınında titreşim veya mekanik titremeden kaynaklanacak yanlış sayımları önler.

Yer değiştirme birimleri

Çoğu zaman kodlayıcı sayıları metre, mil veya devir gibi birimlerle ifade edilmelidir. Bu gibi durumlarda, sayım başına kodlayıcı yer değiştirme oranı ile çarpılarak sayım istenen birime dönüştürülür:

.

Genelde bu hesaplama, artımlı kodlayıcı arayüzünden sayıları okuyan bir bilgisayar tarafından yapılır. Örneğin, hareketin milimetresi başına 8.000 sayı üreten doğrusal artımlı kodlayıcı kullanıldığında milimetre cinsinden konum şu şekilde hesaplanır:

.

Yuvaya getirme

Artımlı bir kodlayıcı arayüzünün mutlak konumu izlemesi ve raporlaması için kodlayıcının sayımları onun bağlı olduğu mekanik sistemdeki bir referans konumuyla ilişkilendirilmelidir. Bu genellikle, mekanik sistemin (ve kodlayıcının) bir referans konumu ile hizalanana kadar hareket ettirilmesi ve ardından ilgili mutlak konum sayımlarının kodlayıcı arabiriminin sayacına atanmasından oluşan sistemin yuvaya getirme (homing) işlemiyle yapılır.

Hedef aramayı kolaylaştırmak için bazı mekanik sistemlere mekanik sistem "yuva" (referans) konumundayken sinyal veren bir yakınlık sensörü yerleştirilir. Bu gibi durumlarda mekanik sistem kodlayıcı arayüzü sensör sinyalini alana kadar hareket ettirilerek bu konumun üzerine denk gelen konum değeri konum sayacına atanır.

Bazı dönen mekanik sistemlerde (örneğin dönen radar antenleri), ilgilenilen "konum", bir referans konumuna göre dönme açısıdır. Bunlar genelde indeks (veya Z) çıkış sinyalli döner artımlı kodlayıcı kullanır. "İndeks" sinyali mil referans konumundayken verilir böylece kodlayıcı arayüzünün referans açısını konum sayacına atamasına neden olur.

Bazı artımlı kodlayıcı uygulamalarında referans konum dedektörleri yoktur ve bu yüzden başka yollarla hedef arama yapılmalıdır. Örneğin bilgisayar, fare veya iztopu işaretleme aygıtı kullanırken önyüklemede bir başlangıç ekran konumu varsayılarak aygıt yuvaya getirilir ve karşılık gelen sayılar X ve Y konum sayaçlarına atanır.

Elle çalıştırılan kumandalar (örneğin, ses seviye kumandası) olarak kullanılan pano kodlayıcılarda, ilk konum elektrik gücü açıldığında ve konum sayacına atandığında ve güç kapatıldığında, flaş bellekten veya diğer kalıcı bellekten alınarak mevcut konum sayısı bir sonraki çalışma için başlangıç konumu olarak hizmet etmek üzere kalıcı belleğe kaydedilir.

Hız ölçümü

Bunun gibi mekanik konveyörler genellikle kapalı döngü hız kontrolü için geri besleme cihazları olarak döner artımlı kodlayıcılar kullanır

Artımlı kodlayıcılar genellikle mekanik sistemlerin hızını ölçmek için kullanılır. Bu, izleme amacıyla veya hareket kontrolü için geri bildirim sağlamak amacıyla veya her ikisi için yapılabilir.[5] Radar anten dönüşünün ve malzeme konveyörlerinin hız kontrolü ve robotik, koordinat ölçüm makineleri (CMM) ve CNC makinelerinde hareket kontrolü bazı çok kullanılan uygulamalardır.

Artımlı kodlayıcı arayüzleri öncelikle mekanik yer değiştirmenin izlenmesiyle ilgilidir ve genellikle hızı doğrudan ölçmez. Sonuç olarak hızın, konumun zamana göre türevi alınarak dolaylı olarak ölçülmesi gerekir. Konum sinyali doğası gereği nicemlenmiştir ve bu durum, özellikle düşük hızlarda niceleme hatası nedeniyle türevin alınmasında zorluk çıkarır.

Kodlayıcı hızı, kodlayıcı çıkış darbelerini (veya kenarlarını) sayarak veya zamanlayarak belirlenebilir.[7] Ortaya çıkan değer, hızın hesaplanabileceği sırasıyla frekans veya periyodu gösterir. Hız frekansla doğru orantılı, periyotla ters orantılıdır.

Frekansa göre hız ölçümü

Konum sinyali örneklenirse (ayrı bir zaman sinyali), darbeler (veya darbe kenarları) arayüz tarafından algılanır ve sayılır ve hız, genellikle arayüze okuma erişimi olan bir bilgisayar tarafından hesaplanır. Bunu yapmak için bilgisayar, zamanında arayüzden konum sayımlarını okur ve daha sonra ‘i bulmak için zamanında sayıları tekrar okur. Daha sonra ‘dan ‘e geçen zaman aralığındaki ortalama hız hesaplanır:[2]

.

Ortaya çıkan hız değeri, birim zaman başına sayım (örneğin saniye başına sayım) olarak ifade edilir. Ancak pratikte hızın genellikle saniye başına metre, dakika başına devir (RPM) veya saat başına mil (MPH) gibi standart birimlerle ifade edilmesi gerekir. Bu gibi durumlarda yazılım, sayımlar ile istenen mesafe birimleri arasındaki ilişkinin yanı sıra örnekleme periyodunun istenen zaman birimlerine oranını da hesaba katar. Örneğin devir başına 4.096 sayım üreten ve saniyede bir kez okunan döner artımlı kodlayıcıdada, yazılım RPM'yi şu şekilde hesaplar:

.

Hız bu şekilde ölçülürken, ölçüm çözünürlüğü hem kodlayıcı çözünürlüğü hem de örnekleme periyodu (iki örnek arasında geçen süre) ile orantılıdır; Örnekleme periyodu arttıkça ölçüm çözünürlüğü de artar.[2]

Periyoda göre hızın ölçümü

Alternatif olarak, darbe genişliği veya periyodu ölçülerek her kodlayıcı çıkış darbesinde bir hız ölçümü raporlanabilir. Bu yöntem kullanıldığında ölçümler belirli zamanlar yerine belirli konumlarda tetiklenir. Hız hesaplaması yukarıda gösterilenle aynıdır (sayım / zaman), ancak bu durumda ölçüm başlama ve durma süreleri ( ve ) bir zaman referansı ile sağlanır.

Bu teknik konum niceleme hatasını önler ancak zaman referansının nicelenmesiyle ilgili hatalara neden olur. Ayrıca faz hataları, simetri hataları ve geçiş konumlarındaki nominal değerlerden sapmalar gibi sensör idealsizliklerine karşı daha duyarlıdır.[8]

Artımlı kodlayıcı arayüzü

PCI Express 6 eksenli artımlı kodlayıcı arayüzü.Input connectors for encoder signalsRS-422 line receiversFPGAPCI Express edge connector
PCI Express 6 eksenli artımlı kodlayıcı arayüzü. Yukarıdan aşağıya: giriş birleştiricileri (L) ve hat alıcıları (R); FPGA; arka panel birleştirici

Artımlı kodlayıcı arayüzü, artımlı kodlayıcıdan sinyalleri alan, mutlak konum ve diğer bilgileri üretmek için sinyalleri işleyen ve elde edilen bilgileri harici devrelerin kullanımına sunan elektronik devredir.

Artımlı kodlayıcı arayüzleri, ASIC'ler, FPGAlardaki IP blokları, mikrodenetleyicilerde özel çevresel arayüzler ve yüksek sayım hızları gerekmediğinde yoklamalı (yazılım izlenen) Genel Amaçlı Giriş/Çıkışlar (GPIO) dahil olmak üzere çeşitli şekillerde uygulanır.

Uygulamadan bağımsız olarak arayüz, bir sonraki durum değişikliği olmadan önce her AB durum değişikliğini bulmak için kodlayıcının A ve B çıkış sinyallerini yeterince sık örneklemelidir. Bir durum değişikliği tespit edildiğinde, A'nın B'nin önünde mi yoksa arkasında mı olduğuna bağlı olarak konum sayımlarını artırılır veya azaltılır. Bu genellikle önceki AB durumunun bir kopyasının saklanması ve durum değişikliği üzerine hareket yönünü belirlemek için mevcut ve önceki AB durumlarının kullanılmasıyla yapılır.

Hat alıcıları

Artımlı kodlayıcı arayüzleri, kodlayıcı tarafından üretilen sinyalleri almak için çeşitli elektronik devre türlerini kullanır. Bu hat alıcıları, aşağı yöndeki arayüz devrelerini korumak için tampon görevi ve çoğu durumda sinyal şartlandırma da yapar.

Tek uçlu

Artımlı kodlayıcı arayüzleri, tek uçlu (örneğin, itme-çekme, açık toplayıcı) çıkışlı kodlayıcılardan sinyalleri almak için tipik olarak Schmitt tetikleyici girişlerini kullanır. Bu tür hat alıcısı doğası gereği düşük seviyeli gürültüyü (giriş histerezisi aracılığıyla) reddeder ve aşağı akış devrelerini geçersiz (ve muhtemelen yıkıcı) mantık sinyali seviyelerinden korur.

Diferansiyel

RS-422 hat alıcıları genellikle diferansiyel çıkışlı kodlayıcılardan sinyal almak için kullanılır. Bu tip alıcı, ortak mod gürültüsünü reddeder ve gelen diferansiyel sinyalleri, aşağı akış mantık devrelerinin gerektirdiği tek uçlu şekle dönüştürür.

Kritik görev sistemlerinde, kodlayıcı güç kaybı, sinyal sürücü arızası, kablo arızası veya kablo bağlantısının kesilmesi nedeniyle giriş sinyali kaybını tespit etmek için bir kodlayıcı arayüzü gerekli olabilir. Bu genellikle geçerli giriş sinyallerinin yokluğunu bulan ve bu durumu "sinyal kaybı" durum çıkışı yoluyla bildiren gelişmiş RS-422 hat alıcıları kullanılarak gerçekleştirilir. Normal çalışmada, giriş durumu geçişleri sırasında durum çıkışlarında hatalar (kısa darbeler) görünebilir; Tipik olarak kodlayıcı arayüzü, bu aksaklıkların yanlışlıkla kayıp sinyaller olarak yorumlanmasını önlemek için durum sinyallerini filtreler. Arayüze bağlı olarak sonraki işlemler, sinyal kaybının belirlenmesine kesme isteği oluşturulmasını ve hata günlüğü veya arıza analizi için uygulamaya bildirim gönderilmesini içerebilir.

Saat senkronizasyonu

2-FF senkronizatör. Hat alıcısının çıkış sinyali Din'e uygulanır; Dout sinyali kareleme kod çözücüye gönderilir.
Yüksek saat frekanslarında, senkronizatörler bit hata oranını azaltmak için üç (bunun gibi) veya daha çok flip-flop kullanabilir

Artımlı kodlayıcı arayüzü büyük ölçüde bir saat sinyali tarafından hızlanan sıralı mantıktan oluşur. Bununla birlikte, gelen kodlayıcı sinyalleri arayüz saatine göre eşzamansızdır çünkü zamanlamaları yalnızca kodlayıcı hareketi tarafından belirlenir. Sonuçta, hem metastabiliteden kaynaklanan hataları önlemek hem de sinyalleri karesel kod çözücünün saat alanına zorlamak için A ve B (ayrıca kullanılıyorsa Z ve alarm) hat alıcılarından gelen çıkış sinyallerinin arayüz saatiyle eşzamanlı yapılması gerekir.[9]

Genellikle bu senkronizasyon, burada görülen iki flip-flop senkronizatörü gibi bağımsız, tek sinyalli senkronizatörler tarafından gerçekleştirilir. Çok yüksek saat frekanslarında veya çok az hata oranına gerek duyulduğunda, senkronizatörler kabul edilebilir derecede az bit hata oranına ulaşmak için ek flip-floplar içerebilir.[10]

Giriş filtresi

Çoğu durumda bir kodlayıcı arayüzü, daha fazla işleme tabi tutulmadan önce senkronize kodlayıcı sinyallerini filtrelemelidir. Bu, motor uygulamalarında[11] yaygın olarak bulunan alçak-seviyeli gürültüyü ve kısa, büyük genlikli gürültü sivri uçlarını reddetmek ve mekanik tip kodlayıcılar durumunda, mekanik kontak sıçraması nedeniyle oluşan sayım hatalarını önlemek için A ve Byi geri döndürmek için gerekli olabilir.

Donanım tabanlı arayüzler genellikle kodlayıcı sinyalleri için programlanabilir filtreler sağlar, bu ise geniş bir filtre ayar aralığı sunar ve böylece gerektiğinde kontakları geri döndürmelerine veya gürültüden veya yavaşça dönen sinyallerden kaynaklanan geçişleri bastırmalarına olanak tanır. Yazılım tabanlı arayüzlerde, A ve B genellikle yazılım tarafından örneklenen (yoklama veya kenar kesintileri yoluyla) ve geri döndürülen GPIO'lara bağlanır.

Kaynakça

  1. ^ a b Sensoray. "Introduction to Incremental Encoders". 18 Temmuz 2018 tarihinde kaynağından arşivlendi. Erişim tarihi: 18 Temmuz 2018. 
  2. ^ a b c d e Craig, K. "Optical Encoders" (PDF). 10 Temmuz 2022 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 25 Temmuz 2018. 
  3. ^ a b c d "The Basics of How an Encoder Works" (PDF). Encoder Products Company. 23 Temmuz 2018 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 23 Temmuz 2018. 
  4. ^ "Encoder Basics" (PDF). ICS A/S. 3 Mart 2021 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 10 Haziran 2022. 
  5. ^ a b c d e "Encoder Primer" (PDF). NASA Infrared Telescope Facility (IRTF). Institute for Astronomy, University of Hawaii. 19 Eylül 2009 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 17 Ağustos 2018. 
  6. ^ "3 Steps to Specifying the Correct Encoder Output Type". Encoder Products. 20 Ağustos 2018 tarihinde kaynağından arşivlendi. Erişim tarihi: 20 Ağustos 2018. 
  7. ^ Collins, Danielle. "How are encoders used for speed measurement?". Design World. 3 Ağustos 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 22 Eylül 2020. 
  8. ^ Petrella, Roberto; Tursini, Marco; Peretti, Luca; Zigliotto, Mauro. "Speed Measurement Algorithms for Low-Resolution Incremental Encoder Equipped Drives: a Comparative Analysis" (PDF). 16 Nisan 2021 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 22 Eylül 2020. 
  9. ^ Ginosar, Ran. "Metastability and Synchronizers: A Tutorial" (PDF). Israel Institute of Technology. 10 Aralık 2019 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 21 Ocak 2020. 
  10. ^ Donohue, Ryan. "Synchronization in Digital Logic Circuits" (PDF). Stanford Üniversitesi. 19 Ağustos 2019 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 21 Ocak 2020. 
  11. ^ "Quadrature Decoder/Counter Interface ICs" (PDF). Agilent Technologies. 23 Eylül 2010 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 20 Ağustos 2018. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Frekans</span> bir olayın birim zaman (genel olarak 1 saniye) içinde hangi sıklıkla, kaç defa tekrarlandığının ölçümü

Frekans veya titreşim sayısı bir olayın birim zaman içinde hangi sıklıkla, kaç defa tekrarlandığının ölçümüdür, matematiksel ifadeyle çarpmaya göre tersi ise periyot olarak adlandırılır.

<span class="mw-page-title-main">Röle</span> tamamen izole edilmiş ikinci bir devre tarafından bir elektrik devresinin açılıp kapanmasına izin veren elektrikli cihaz

Röle, elektriksel olarak çalıştırılan, elektromanyetik bir anahtardır. Yani üzerinden akım geçtiği zaman çalışan devre elemanıdır. Röle; bobin, palet ve kontak olmak üzere üç bölümden meydana gelir. Bobin kısmı rölenin giriş kısmıdır. Palet ve kontak kısmının bobin ile herhangi bir elektriksel bağlantısı yoktur. Röle, tek veya çoklu kontrol sinyalleri için birçok giriş terminali ve birçok çalışma kontağı terminalinden oluşur. Röle, birden çok kontak düzenlemesinde, örneğin; kontakları temas ettirme, kontakların temasını kesme veya bu iki durumun kombinasyonları gibi herhangi bir sayıda kontaklı olabilir.

<span class="mw-page-title-main">Öz empedans</span>

Öz direnç (Empedans), maddenin kimyasal özelliğinden dolayı direncinin artması ya da azalmasına neden olan her maddeye özgü ayırt edici bir özelliktir. Farklı maddelerin empedansları aynı olabilir ama öz dirençleri aynı olamaz. R= Lq/Q dur. (Rezistif Direnç= Uzunluk*öz direnç/kesit, Alternatif akım'a karşı koyan zorluk olarak adlandırılır. İçinde kondansatör ve endüktans gibi zamanla değişen değerlere sahip olan elemanlar olan devrelerde direnç yerine öz direnç kullanılmaktadır. Öz direnç gerilim ve akımın sadece görünür genliğini açıklamakla kalmaz, ayrıca görünür fazını da açıklar. DA devrelerinde öz direnç ile direnç arasında hiçbir fark yoktur. Direnç sıfır faz açısına sahip öz direnç olarak adlandırılabilir.

<span class="mw-page-title-main">Servo motor</span>

Servo, herhangi bir mekanizmanın işleyişini hatayı algılayarak yan bir geri besleme düzeneğinin yardımıyla denetleyen ve hatayı gideren otomatik aygıttır. Robot teknolojisinde en çok kullanılan motor çeşididir. Bu sistemler mekanik olabileceği gibi elektronik, hidrolik, pnömatik veya başka alanlarda da kullanılabilmektedir. Servo motorlar; çıkış, mekaniksel konum, hız veya ivme gibi değişkenlerin kontrol edildiği, özetle hareket kontrolü yapılan bir düzenektir. Servo motorlar batlerli motordurlar Servo motor içerisinde herhangi bir motor AC, DC veya step motor bulunmaktadır. Ayrıca sürücü ve kontrol devresini de içerisinde barındırmaktadır.

<span class="mw-page-title-main">Sismograf</span> Sismograf ölçüm cihazı

Sismograf ya da depremyazar,, depremler, volkanik patlamalar ve patlamaların neden olduğu yer seslerini ve sarsıntılarını sürekli olarak kaydederek yer sarsıntılarının büyüklüğünü, süresini, merkezini ve zamanını saptamaya yarayan alete denir. Genellikle sismograf ‘ın zamanlama ve kayıt cihazı vardır. Daha önce kağıda veya filme ama atık dijital olarak kaydedilen ve işlenen bu cihazın çıktısı bir sismogramdır. Bu tür veriler depremlerin yerini belirlemek ve karakterize etmek ve Dünya'nın iç yapısını incelemek için kullanılır.

<span class="mw-page-title-main">Genlik modülasyonu</span>

Genlik modülasyonu İletişim teknolojisinde (yayıncılıkta) kullanılan bir modülasyon türüdür. Uluslararası literatürde AM kısaltmasıyla gösterilir. Dilimizde ise, zaman zaman GM kısaltması kullanılmaktadır. Bu modülasyon türü 1906 yılında ilk defa Kanadalı mühendis Reginald Fessenden tarafından (1866-1932) geliştirilmiştir.

<span class="mw-page-title-main">Modülasyon</span>

Modülasyon ya da kipleme, bir taşıyıcı sinyal ile bilgi sinyalini birleştirmekten ibaret olan ve iletişim teknolojisinde (yayıncılıkta) kullanılan bir yöntemdir. Yöntem, başlarda anten yoluyla yapılan yayınlar için öngörülmüş ise de, günümüzde kablolu, kablosuz her tür iletişimde kullanılmaktadır. Çok alçak frekanslı sinyallerin çok uzak mesafelere gönderilmesi güçtür. Bu nedenle alçak frekanslı sinyalin, yüksek frekanslı taşıyıcı bir sinyal üzerine bindirilerek uzak mesafelere taşınması sağlanabilir. Bu noktada kiplemeye başvurulur.

<span class="mw-page-title-main">Titreşim</span>

Titreşim bir denge noktası etrafındaki mekanik salınımdır. Bu salınımlar bir sarkaçın hareketi gibi periyodik olabileceği gibi çakıllı bir yolda tekerleğin hareketi gibi rastgele de olabilir.

Fizikte, birim zamanda aktarılan veya dönüştürülen enerjiye ya da yapılan işe güç denir, P simgesiyle gösterilir. Uluslararası Birim Sistemi'nde güç birimi, saniyedeki bir joule'e eşit olan watt'tır kısacası J/s. Eski çalışmalarda güç bazen iş olarak adlandırılırmıştır. Güç türetilmiş bir nicelik ve skaler bir büyüklüktür.

<span class="mw-page-title-main">Frekans modülasyonu</span> frekans modülasyonu, İletişim teknolojisinde (yayıncılıkta) kullanılan bir modülasyon türü

Frekans modülasyonu, İletişim teknolojisinde (yayıncılıkta) kullanılan bir modülasyon türüdür. FM kısaltmasıyla gösterilir. Bu modülasyon türü 1933 yılında Amerikalı mühendis Edwin Howard Armstrong (1890-1954) tarafından geliştirilmiştir.

Mikser Elektronikte, özellikle yayıncılıkta kullanılan ve sinyal frekansını değiştiren bir devredir.

Radyo frekansı yayıncılıkta bir bilgi sinyali ile modüle edilmiş olan taşıyıcı sinyal anlamına gelir. Ancak, bu isim zamanla modüle edilsin, edilmesin, yüksek frekans anlamına da kullanılmaya başlanmıştır.

Elektronik filtre farklı frekanslara sahip sinyallerden kimilerini geçirip, kimilerini bastıran bir devredir.

Elektrik kontağı, elektrik anahtarlarında, rölelerde, şalterlerde bulunan ve devreyi açma veya kapatma görevini yapan bir elektrik devresi bileşenidir. İki eş iletken metalden oluşur ve aralarındaki boşluk kapandığında elektrik akımını iletir, boşluk açıldığında iletmez. Boşluk, hava, vakum, SF6 veya diğer elektriksel yalıtım akışkanı olmalıdır. Kontaklar, buton ve anahtar vasıtasıyla manüel çalıştırılabildiği gibi, sensör veya mekanik cihazlar vasıtasıyla basınçla ve röle ile elektromekaniksel olarak da açılıp/kapatılabilir. Kontak malzemesi, genellikle gümüş ve altın gibi süper iletkenlerden imal edilir. Maliyeti azaltmak için kontaklar daha ucuz malzemelerden de yapılabilir.

<span class="mw-page-title-main">Amplifikatör</span>

Amplifikatör veya yükselteç, elektronik sinyalleri artırmak için kullanılan elektronik cihazlardır. Amplifikatörler bu işlemi bir güç sağlayacısından alıp bu çıkış sinyallerinin şeklini eşleştirerek yaparlar. Yani, bir amplifikatör güç sağlayıcısından aldığı sinyalleri düzenler.

<span class="mw-page-title-main">Enkoder</span>

Enkoder, standardizasyon, hız ya da sıkıştırma amacıyla bilgileri bir biçimden veya koddan diğerine dönüştüren bir cihaz, devre, dönüştürücü, yazılım programı, algoritmadır.

Distorsiyonmetre elektronikte harmonik distorsiyon oranını ölçmek için kullanılan bir ölçü aletidir.

Renk öldürücü televizyon alıcılarında siyah-beyaz yayını bozan renkli sinyal bileşenlerini silmeye yarayan bir yardımcı devredir.

<span class="mw-page-title-main">Döner kodlayıcı</span> açısal pozisyonu (hareketi) analog veya dijital koda dönüştüren cihaz

Döner kodlayıcı, mil kodlayıcı da denir ve bir milin veya aksın açısal konumunu veya hareketini analog veya dijital çıkış sinyallerine dönüştüren elektromekanik bir cihazdır.

<span class="mw-page-title-main">Strouhal sayısı</span>

Boyut analizinde, Strouhal sayısı salınımlı akış mekanizmalarını tanımlayan bir boyutsuz sayıdır. Bu parametre, 1878 yılında vorteks saçıntısı oluşturan tellerle ve rüzgarda ses çıkaran tellerle deney yapan Çek fizikçi Vincenc Strouhal'ın adını taşır. Strouhal sayısı, akışkanlar mekaniğinin temel ilkelerinin önemli bir bileşenidir.