İçeriğe atla

Ark vericisi

1918 lerde amerikan donanması tarafından Dünya çapında filo ile iletişime geçebilmek için desteklenen radyo istasyonunda kullanılan 1 megawatt gelmiş geçmiş inşa edilen en büyük Poulsen ark vericisi.

Bazen ark aktarıcısı olarak da adlandırılan  Ark vericisi ya da Poulsen arkı Danimarkalı mühendis Valdemar Poulsen 1903 te onu icat ettikten sonra,[1][2] kablosuz telgraf için birçok türde ark vericisi kullanıldı. Ark vericisi doğru akım elektriğini alternatif akım radyo frekansına çeviren elektrik arkı kullanır. Elektron tüpü vericisi ile yeri değiştirilene kadar 1903 ten 1920 ye radyo vericisi olarak kullanıldı. Devamlı sinüs biçimli dalgalar üretebilen ilk vericilerden biri sesi (genlik modülasyonu) radyo ile ileten ilk teknolojilerdendir. IEEE Milestones'un elektrik mühendisliği ödülleri listesinin içindedir.[3]

Tarih

Poulsen'in ilk ark vericisi 1903'te
Basit bir ark vericisinin devresi Poulsen'in 1904 teki kağıdından

Elihu Thomson karbon arkının seri ayarlanmış devre ile devreye paralel bağlanmasını keşfetti. Bu ark muhtemelen ses frekansını sınırlıyordu.[4] Standartlar barosu 1900 ler civarında paralel salınım yapan devre ile William Duddell'e inandı.[5]

İngiliz mühendis William Duddell salınım yapan devrenin karbon ark lambası kullanılarak nasıl yapılacağını keşfetti. Duddell'in "müzikli arkı" ses frekansları ile çalıştırılıyordu ve Duddell'in kendisi radyo frekansları ile ark salınımı yapmanın imkânsız olduğu sonucuna vardı.

'Telegraphone'u (Dünyanın ilk manyetik kayıt cihazı)ispat eden Valdemar Poulsen, 1900 Paris sergisinde frekans ve verimliliği istenilen seviyeye yükseltmede başarılı oldu. Poulsen'in arkı 200 kiloherz e kadar frekans üretebilir ve 1903 te patenti alınmıştır.

Birkaç yıllık ark teknolojisi gelişimi Poulsen iş arkadaşı peder Oluf Pedersen ve onun finansal bankerleri tarafından Almanya'ya ve Büyük Britanya'ya 1906'da iletildi. 1909'da birkaç ark vericisi gibi Amerikan patentleri Cyril F. Elwell tarafından satın alındı. Avrupa ve Amerika'dan sonra gelen gelişmeler oldukça farklıydı çünkü Avrupa'da Poulse'nin teknolojisinde uzun yılların değişik zorluklarda uygulaması vardı. Oysaki Amerika Birleşik Devletlerinde gelişen ticari radyo telgraf sistemi yakında Federal Telgraf Şirketi tarafından geliştirilecekti. Sonra Amerikan Donanması da Poulsen'in sistemini benimsemiştir. Yalnızca pasif frekans dönüşümü ark vericisi taşınabilirdir ve denizcilikte kullanım için uygundur. Bu onu on yıl boyunca yerine elektron tüpü sistemi geçene kadar en önemli taşınabilir radyo sistemi yaptı.

1922'de, Ulusal Standartlar ve Teknoloji Bürosu "ark en geniş şekilde yüksek güçlü uzun mesafeli işler için verici aygıtı olarak kullanılmıştır. Ark şu an verilen zaman aralığında etrafa ışınlar halinde amatör istasyonlar göz önünde bulundurulmadığında gönderilen tüm enerjinin yüzde sekseninden sorumlu olmak için kurulmuştur. " belirtmiştir.[6]

Tanım

Radyo vericisinin zamanının varlığının aksine, kıvılcım gediği vericisi, ark vericisi genliği azalmayan ya da sürekli dalgalar üretir. Girişimle birlikte radyo tayfı tarafından kaplandığı halde genliği azalan dalgaların iletim verimliliğini düşürmesi ve iletişimdeki yararsızlığından dolayı bu önemli bir özelliktir. Bu devamlı dalga radyo sinyallerinin üretilmesini sağlayan Danimarkalı mucit Valdemar Poulsen tarafından geliştirilen uygulama daha çok artırılmıştır.

Ark osilatörlerinin üç grubu vardır.[7] İlk Durumda, merceğin içindeki alternatif akım i0 üretecin doğru akımından çok daha küçüktür ve ark otomatik döngü esnasında asla söndürülemez.  Duddell arkı ilk duruma örnektir fakat ilk durum radyo dalgası üreticileri için uygulanabilir değildir. İkinci durumda, alternatif akım yük boşalması toplayıcı arkı ortadan kardırmak için yeterli büyüklüğe sahiptir fakat arkı ters yönde tekrar başlatmaya yetecek kadar büyük değildir.  Bu ikinci durum Poulsen arkıdır. Üçüncü durumda ark ortadan kaybolur fakat vericinin akımı tersine döndüğünde yeniden canlanır. Üçüncü durum bastırılmış kıvılcım aralığıdır ve sönümlenen dalgaları üretir.

Poulsen ark vericisi arkın içinde ayarlanmış bir devreye bağlanmıştır.  Ark vericisi arkın hidrojen gazı ve karbon katotu arasında yandığı ve suyun bakır anotu ile soğutulduğu odası içerir. Odanın altında ve üstünde iki bobin alanı ile çevrilmiştir ve manyetik devrenin iki kutbuna enerji verir. Bu kutuplar odaya yansıtılmıştır, arkın her yüzeyi manyetik alan üretir.

Ark vericisi frekans birkaç kilo herz ve onlarca kilo herz aralığında olduğunda en başarılı şekilde çalışır. Antene ayar yapmak ark vericisinin uyumunu ortadan kaldıracak kadar uyumlu olmalıdır.

Kilitleme

Arkın darbesinin biraz zaman almasından dolayı ve sabit bir durumda oluşmasından dolayı normal açıp kapama anahtarı kullanılamaz. Kullanılan frekans değiştirme anahtar formu yerine kullanılır.[8] Bu dalga modeli telafisinde ark devamlı olarak çalıştırılır ve anahtar arkın frekansını yüzde birden beşe kadar değiştirir.  İstenmeyen sinyal frekansı dalga telafisi olarak tanımlanır. 70 kW a kadarki ark vericilerinde ki anahtar sıklıkla anten bobininde birkaç kere kısa devre yapar.[9] Büyük arklar için ark çıkışı anten indüktörü ile birleştirilebilir ve anahtar ikinci kez topraklanmasının birkaç alt sırası kısa devre olabilir.[10] Bu yüzden "işaret" anahtarın kapalı olduğu durum bir frekans gönderir ve boşluk anahtarın açık olduğu durum başka bir frekanstadır. Eğer bu frekanslar bir birinden yeteri kadar ayrılırsa ve alıcı istasyonunun alıcısı yeterli seçiciliğe sahiptir. Alıcı istasyonu bir frekansa ayarlandığında yalnızca standart devamlı dalgayı ölçer.

Dengeleme dalgası yöntemi birçok tayf bant genişliği kullandı. Bu sadece istenilen iki frekans için iletimiş değildir, aynı zamanda bu frekansların uyumudur. Ark vericisi uyumda başarılıdır. 1921 lerde bir zamanda, the Preliminary International Communications Conference[11] çok fazla dalga girişimine neden olduğu için dengeleme dalga yöntemini yasaklamıştır.[4]

İki farklı frekanstaki sinyallerin yayılımının gereksinimleri uniwave uygulaması ile ortadan kaldırılmıştır.[12] Ateşleme uygulaması olarak adlandırılan bir uniwave uygulamasında kilitleme arkı durdurup başlatabilir. Ark odası iki elektrodu direnç ve yok edilen arka doğru kısa devre yaptırabilir. Anahtar ateşleyiciyi hareket ettirip akı yeninden ateşleyen elektromıknatısa enerji verebilir. Bu uygulamanın çalışması için ark odası ısınmalıdır. Bu uygulama 5 kW civarına kadar ark vericisi için uygundur.

İkinci uniwave uygulaması emme uygulamasıdır ve ayarlanmış iki devre ve anahtar içerir.  Anahtar kapalı iken ark anten ve ayarlanmış anten bobinine bağlanmıştır. Anahtar açıkken ark arka paralel devre olarak ayarlanmış dummy anteni ile bağlanmıştır. Arka paralel devre indüktör, kapasitör ve yüklenmiş paralel dirençler içerir.[13][14] İkinci devre yaklaşık olarak iletilen frekans ile aynı frekansa ayarlanmıştır. Bu devre arkı çalışır halde tutar ve iletilen gücü absorbe eder. Emme metodu genellikle W.A. Eaton'dan dolayıdır.[4]

Emme metodu için devrelerin anahtarlanma dizaynı önemlidir. Yüksek voltajlı arkı değiştirir. Bu yüzden anahtarın temasının ark bastırılması gibi durumları olmalıdır. Eaton iletişim cihazını çalıştıran anahtarları elektro mıknatıslar tarafından çalıştırılan telgrafa sahiptir.  Bu iletişim cihazı dört set anahtarı iki yol için de seri olarak kullanır. (biri antene diğeri arka paralel devre olan). Her bir iletişim cihazı direnç tarafından bağlanmıştır. Sonuç olarak, anahtar hiçbir zaman tamamen açık değildir fakat çok fazla zayıflama vardır.[15]

Ayrıca bakınız

Kaynakça

  1. ^ US 789449, Poulsen, Valdemar, "Method of producing alternating currents with a high number of vibrations", published 10 June 1903, issued 9 May 1905 
  2. ^ Poulsen, Valdemar (12 Eylül 1904). "System for producing continuous electric oscillations". Transactions of the International Electrical Congress, St. Louis, 1904, Vol. 2. J. R. Lyon Co. ss. 963-971. Erişim tarihi: 22 Eylül 2013. 
  3. ^ "Milestones:Poulsen-Arc Radio Transmitter, 1902". IEEE Global History Network. IEEE. 9 Ekim 2014 tarihinde kaynağından arşivlendi. Erişim tarihi: 29 Temmuz 2011. 
  4. ^ a b c Little 1921, s. 125
  5. ^ Bureau of Standards 1922, s. 404
  6. ^ Bureau of Standards 1922, s. 400
  7. ^ Bureau of Standards 1922, ss. 404–405
  8. ^ Bureau of Standards 1922, ss. 415–416
  9. ^ Bureau of Standards 1922, figure 228.
  10. ^ Bureau of Standards 1922, figure 229
  11. ^ Possibly the Preliminary International Conference on Electrical Communications, 1920; see http://www.archives.gov/research/guide-fed-records/groups/043.html 26 Mayıs 2016 tarihinde Wayback Machine sitesinde arşivlendi. at 43.2.11
  12. ^ Bureau of Standards 1922, ss. 416–419
  13. ^ Bureau of Standards 1922, figure 229-A
  14. ^ Eaton 1921
  15. ^ Eaton 1921, s. 115

Konuyla ilgili yayınlar

  • Elwell, C. F. (1923), The Poulsen Arc Generator, London: Ernest Benn Limited 
  • Howeth, Linwood S. (1963), History of Communications-Electronics in the United States Navy, U.S. Govt. Printing Office 
  • Morecroft, J. H.; Pinto, A.; Curry, W. A. (1921), Principles of Radio Communication, New York: John Wiley & Sons Inc. 
  • Morse, A. H. (1925), Radio: Beam and Broadcast, London: Ernest Benn Limited . History of radio in 1925. Page 25: "Professor Elihu Thomson, of America, applied for a patent on an arc method of producing high-frequency currents. His invention incorporated a magnetic blowout and other essential features of the arc of to-day, but the electrodes were of metal and not enclosed in a gas chamber." Cites to US Patent 500630. Pages 30–31 (1900): "William Du Bois Duddell, of London, applied for a patent on a static method of generating alternating currents from a direct-current supply, which method followed very closely upon the lines of that of Elihu Thomson of 1892. Duddell suggested electrodes of carbon, but he proposed no magnetic blow-out. He stated that his invention could be used for producing oscillations of high frequency and constant amplitude which could "be used with advantage in wireless telegraphy," especially where it was "required to tune the transmitter to syntony." Duddell's invention (Br. Pat. 21,629/00) became the basis for the Poulsen Arc, and also of an interesting transmitter evolved by Von Lepel." Page 31 (1903): "Valdemar Poulsen, of Copenhagen, successfully applied for a patent upon a generator, as disclosed by Duddell in 1900, plus magnetic blow-out proposed by Thomson in 1892, and a hydrogenous vapour in which to immerse the arc. (Br. Pate 15,599/03; U.S. Pat 789,449.)" Also Ch. IV, pp 75–77, "The Poulsen Arc". Refinements by C. F. Elwell.
  • Pedersen, P. O. (Ağustos 1917), "On the Poulsen Arc and its Theory", Proceedings of the Institute of Radio Engineers, 5 (4), ss. 255-319, 22 Aralık 2016 tarihinde kaynağından arşivlendi, erişim tarihi: 24 Mayıs 2016, A really satisfactory theory of the operation of the Poulsen arc does not exist at present, a satisfactory theory being one which will enable the calculation of the results, the necessary data being given. 

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Radyo</span> elektromanyetik radyo dalgalarındaki ses modülasyonunu önce elektronik ortama sonra da sese çeviren elektronik alet

Radyo, elektromanyetik radyo dalgalarındaki ses modülasyonunu önce elektronik ortama sonra da sese çeviren elektronik alet. Türk Dili dergisinde Kırgız Türkçesinde radyo anlamında kullanılan үналгы /ünalgı/ sözünün Türkiye Türkçesinde kullanılması da gündeme getirilmiştir. Radyoyu Marconi icat etmiştir.

<span class="mw-page-title-main">Televizyon</span> bir vericiden elektromanyetik dalga hâlinde yayınlanan görüntü ve seslerin, ekranlı ve hoparlörlü elektronik alıcılar sayesinde yeniden görüntü ve sese çevrilmesini sağlayan haberleşme aygıtı

Televizyon veya kısaca TV, bir vericiden elektromanyetik dalga hâlinde yayımlanan görüntü ve seslerin, ekranlı ve hoparlörlü elektronik alıcılar sayesinde yeniden görüntü ve sese çevrilmesini sağlayan haberleşme sistemidir. Aynı zamanda kitle iletişim aracı da olan televizyon, yayımlanan görüntü ve sesleri alıcıya ulaştıran elektronik cihazdır.

Kısa Dalga yayınları almak üzere tasarlanmış radyo

<span class="mw-page-title-main">HAARP</span> sinyal araştırma programı

Yüksek Frekanslı Etkin Kutup Işıkları Araştırma Programı ya da HAARP; ABD Hava Kuvvetleri, Deniz Kuvvetleri, Alaska eyaletinin en büyük üniversitesi Alaska Fairbanks ve Defansif İleri Araştırma Projeleri Ajansı (DARPA) tarafından finanse edilmiş, etkin kutup ışıkları tabanlı, iyonosferin özelliklerini ve davranışlarını araştırmak üzere Alaska'da sürdürülen çalışma. İngiliz havacılık şirketi BAE Systems tarafından tasarlanmış ve inşa edilmiştir.

<span class="mw-page-title-main">Ultrason</span> İnsan işitme aralığının üzerinde frekanslara sahip ses dalgaları

Ultrason, 20 kilohertz'den daha yüksek frekanslara sahip sestir. Bu frekans, sağlıklı genç yetişkinlerde insan işitmesinin yaklaşık üst duyulabilir sınırıdır. Akustik dalgaların fiziksel prensipleri, ultrason dahil olmak üzere herhangi bir frekans aralığına uygulanır. Ultrasonik cihazlar, 20 kHz'den birkaç gigahertz'e kadar frekanslarda çalışır.

<span class="mw-page-title-main">Guglielmo Marconi</span> İtalyan mucit ve elektrik mühendisi (1874–1937)

Birinci Marconi Markizi Guglielmo Marconi, İtalyan mucit ve elektrik mühendisidir. Uzun mesafeli radyo iletişimi, Marconi yasası, telsiz telgraf sistemi üzerine yaptığı çalışmalarıyla ünlüdür. Marconi, radyonun mucidi olarak bilinir ve kablosuz telgrafın gelişimine katkılarından ötürü Karl Ferdinand Braun ile 1909 Nobel Fizik Ödülü'nü paylaşmıştır. Girişimci, iş insanı ve daha sonra Marconi Şirketi adını alan ve 1897 yılında İngiltere'de kurulan "The Wireless Telegraph&SignalCompany"nin kurucusu olan Marconi, kendinden önce gelen fizikçi ve araştırmacıların çalışmalarını kullanarak ve değişiklikler yaparak radyonun ticari bir başarı kazanmasını sağlamıştır. 1929 yılında İtalya kralı Markoni’ye Markiz unvanıyla asalet bahşetmiştir.

<span class="mw-page-title-main">Kontaktör</span> bir elektrik devresini başka bir devrenin kapanması ile kapatan veya açan elektromekanik bir alet

Kontaktör, elektrik güç devresini anahtarlamak için kullanılan, elektrikle kumanda edilen bir elektrik anahtardır. Kontaktör, genellikle anahtarlamalı devreden çok daha az güçle, örneğin 230 voltluk bir motor anahtarını 24 voltluk bobin elektromıknatısıyla açıp kapatılması gibi, açıp kapatır.

<span class="mw-page-title-main">Anten (elektronik)</span> elektrik gücünü radyo dalgaları ile çeviren elektronik aygıt

Elektronikte antenler, boşluktaki elektromanyetik dalgaları toplayarak bu dalgaların iletim hatları içerisinde yayılmasını sağlayan veya iletim hatlarından gelen sinyalleri boşluğa dalga olarak yayan cihazlardır. Antenlerde enerjinin iletimi ve alınması anteni oluşturan metal iletkenlerin uygulanan elektrik akımı ile yüklenmesi ile gerçekleşir. Alıcı antene eşlenen güç sinyalin arttırılması için bir amplifikatöre iletilebilir. Antenler radyo, telsiz ve benzeri kablosuz iletişim cihazlarının temel elemanlarındandır.

<span class="mw-page-title-main">Genlik modülasyonu</span>

Genlik modülasyonu İletişim teknolojisinde (yayıncılıkta) kullanılan bir modülasyon türüdür. Uluslararası literatürde AM kısaltmasıyla gösterilir. Dilimizde ise, zaman zaman GM kısaltması kullanılmaktadır. Bu modülasyon türü 1906 yılında ilk defa Kanadalı mühendis Reginald Fessenden tarafından (1866-1932) geliştirilmiştir.

<span class="mw-page-title-main">Modülasyon</span>

Modülasyon ya da kipleme, bir taşıyıcı sinyal ile bilgi sinyalini birleştirmekten ibaret olan ve iletişim teknolojisinde (yayıncılıkta) kullanılan bir yöntemdir. Yöntem, başlarda anten yoluyla yapılan yayınlar için öngörülmüş ise de, günümüzde kablolu, kablosuz her tür iletişimde kullanılmaktadır. Çok alçak frekanslı sinyallerin çok uzak mesafelere gönderilmesi güçtür. Bu nedenle alçak frekanslı sinyalin, yüksek frekanslı taşıyıcı bir sinyal üzerine bindirilerek uzak mesafelere taşınması sağlanabilir. Bu noktada kiplemeye başvurulur.

<span class="mw-page-title-main">NDB ve ADF</span> Seyrüseferi Sistemi

NDB ve ADF, hava ve deniz seyrüseferinde yön bulma amacıyla kullanılan basit bir radyo seyrüseferi sistemi. NDB ve ADF sistemi yer bazlı bir seyrüsefer yardımcısıdır. Yeryüzündeki Non-directional beacon ve taşıttaki automatic direction finder olmak üzere iki eleman ile taşıt içindeki kumanda ve göstergelerden meydana gelir. NDB/ADF sistemi, manyetik pusulaya benzer çalışma prensibi nedeniyle radyo pusulası olarak da bilinir.

Enterferans ya da girişim, istatistikten genetiğe kadar çeşitli alanlarda kullanılan bir terimdir. Terimin en yaygın kullanılışı ise iletişim teknolojisindedir. İletişimde enterferans iletilmek istenen bilginin yanı sıra farklı bilgilerin de alıcıya ulaşması halidir.

Bir nanoanten, ışığı elektrik gücüne dönüştürmek için geliştirilmiş deneysel bir teknoloji olan nanoskopik rektifiye bir antendir. Yani nanoantenler ile ilgili kavram kablosuz güç iletiminde kullanılan bir cihaz olan rektifiye antenlere dayanır. Bir rektifiye anten radyo dalgalarını doğru akıma dönüştüren özelleştirilmiş bir radyo antenidir. Işık, radyo dalgalarına benzeyen elektromanyetik dalgalardan oluşur fakat; daha küçük dalga boylarına sahiptir. Bir nanoanten, nanoteknoloji kullanılarak üretilmiş, ışık için anten görevi gören ve ışığı elektrik akımına dönüştüren, hemen hemen bir ışık dalgası boyutunda olan çok küçük rektifiye antendir. Nanoanten dizilerinin geleneksel güneş pillerine göre daha verimli bir şekilde güneş ışığını elektrik gücüne dönüştüren bir araç olmaları beklenir. Bu fikir ilk olarak Robert L. Bailey tarafından 1972 yılında ortaya atılmıştır. 2012 itibarıyla enerji dönüşümünün mümkün olduğunu gösteren sadece birkaç adet nanoanten cihazı üretilebilmiştir. Nanoantenlerin bir gün fotovoltaik piller kadar etkin maliyetli olabilecekleri halen bilinememektedir. Bir nanoanten, nanoantenin boyutuna uygun spesifik dalga boylarını absorbe etmek için tasarlanmış bir elektromanyetik kollektördür. Bu günlerde Idaho Ulusal Laboratuvarları 3-15 μm uzunluğundaki dalga boylarını absorbe etmek üzere tasarlanmış bir nanoanten tasarlamaktadır. Bu dalga uzunluğu 0.08 - 0.4 eV foton enerjisine karşılık gelir. Anten teorisine göre, bir nanoanten, nanoantenin boyutu belirli bir dalga boyu için optimize edilmiş olmak koşuluyla, herhangi bir dalgaboyundaki ışığı verimli bir şekilde absorbe edebilir. İdeal olarak nanoantenler 0.4 - 1.6 μm arasındaki dalga boylarını absorbe etmek için kullanılmalıdırlar. Çünkü bu aralıktaki dalga boyları, uzak- kızılötesinden daha yüksek enerjiye sahiptirler ve solar radyasyon spektrumunun yaklaşık olarak %85'ini oluştururlar.

<span class="mw-page-title-main">Atacama Large Millimeter Array</span>

Atacama Büyük Milimetre/Milimetre-altı Dizisi (ALMA), Şili'nin kuzeyinde Atacama Çölü'nde yüksek bir platoda bulunan astronomik interferometre özellikli radyo teleskoplardır. Milimetre ölçülerinde dalgaboylarını belirlemek daha kolay olduğundan rasathane, yüksek ve kuru olması nedeniyle Atacama Çölü'nde 5.000 metre yükseklikteki Chajnantor Platosu'na kurulmuştur. 66 adet 12 metre ve 7 metre çaplarında radyo teleskoplar evrendeki milimetre ve milimetre-altı ölçülerinde dalgaboylarını araştırmaktadır. ALMA'nın evrenin erken dönemlerindeki yıldız doğumları hakkında fikir vermesi beklenmektedir.

<span class="mw-page-title-main">Döngü anten</span>

Döngü veya çerçeve anten, uçları dengeli bir iletim hattına bağlı olan döngü şeklinde bir kablo, boru sistemi veya diğer elektriksel iletkenden oluşan bir radyo antenidir. Fiziksel tanımı içerisinde iki belirgin anten tasarımı vardır: boyutu bir dalga boyundan çok daha küçük olan küçük döngü anteni veya çevresi yaklaşık olarak dalga boyuna eşit olan salınım yapan döngü anteni.

<span class="mw-page-title-main">Kıvılcım aralığı</span>

Kıvılcım aralığı iki elektriksel iletken elektrotlarını içerir ve boşluklar ile ayrılır ve genelde gaz mesela hava ile doldurulur, düzenlenen elektrik kıvılcımları iletkenlerin arasından geçer. İletkenler arasındaki potansiyel farkı dayanma gerilimini aştığında, elektrik kıvılcımı oluşur, gaz iyonlaşır ve şiddetle elektriksel özdirenç ve iletkenlik azalır. Daha sonra elektrik akımı olur ve iyonlaşan gazın yolu kırılır veya akım minimum değerin altında azalır buna " tutulan akım ". Bu genelde potansiyel durduğunda olur, fakat bazı durumlarda, ısıtıldığında gaz artar, gerilim ve sonra iyonlaşmış gazın lifi kırılır. Genellikle, iyonlaşmış gazın etkisi şiddetli ve yıkıcıdır, sıklıkla ses oluşumuna yol açar, parlak ve sıcaktır.

<span class="mw-page-title-main">Radyo vericisi</span>

Radyo vericileri radyo yayını yapan, yani stüdyolarda oluşturulan haber ve programların konutlardaki alıcılara ulaştırılmasını sağlayan teknik araçlardır. Programlar kent merkezlerindeki stüdyolarda hazırlanır. Stüdyolarda sesler ses sinyaline (AF) çevrilir. Ses sinyali kablo, radyolink veya uydu yardımıyla verici istasyonlara gelir. Yayın verici istasyondan yapılır.

Yeni bir enerji kaynağı olan enerji hasatlama sistemler ortamda bulunan mevcut elektromanyetik enerjinin kullanılarak verimli doğru akıma dönüştürülmesini hedeflemektedir. Ortamda mevcut olarak bulunan Radyo frekans enerjisi, çeşitli elektronik devre ve cihaz uygulamalarında kullanılmak üzere enerji toplayıcı devrelerce alınır, doğrultularak doğru akım ve gerilim elde edilir. İhtiyaç olan enerjiyi, ortamdaki RF sinyal kaynaklarından temin etme işlemine RF Enerji Hasatlama adı verilmektedir. RF enerji hasatlama devreleri, sensörler, düşük güçlü entegre devreleri ve kablosuz haberleşme modülleri gibi düşük güç tüketen projelerde sürekliliği olan bir enerji kaynağı oluşturmayı amaçlamaktadır. RF enerji toplama sistemi, temelde iki ana bileşenden oluşmaktadır. Bunlar; RF enerjiyi toplayan bir anten ve RF enerjisini doğrultarak doğru akıma çeviren yüksek verimli bir doğrultucu devredir.

<span class="mw-page-title-main">İletim ortamı</span> Conduit for signal propagation

İletim ortamı, telekomünikasyon amaçları için sinyallerin yayılmasına aracılık edebilen bir ortamdır. Sinyaller tipik olarak seçilen ortam için uygun bir tür dalgaya empoze edilmektedir. Örneğin, veriler sesi modüle edebilir ve sesler için bir iletim ortamı hava olabilir, ancak katılar ve sıvılar da iletim ortamı olarak işlev görebilmektedir. Vakum veya hava, ışık ve radyo dalgaları gibi elektromanyetik dalgalar için iyi bir iletim ortamı oluşturmaktadır. Elektromanyetik dalgaların yayılması için maddi madde gerekli olmasa da, bu tür dalgalar genellikle içinden geçtikleri iletim ortamından, örneğin ortamlar arasındaki arayüzlerde absorpsiyon, yansıma veya kırılma ile etkilenmektedir. Bu nedenle, dalgaları iletmek veya yönlendirmek için teknik cihazlar kullanılabilmektedir. Bu nedenle, iletim ortamı olarak bir optik fiber veya bir bakır kablo kullanılmaktadır.

<span class="mw-page-title-main">Yakınlık kartı</span> temassız akıllı kart

Anahtar kartı olarak da bilinen yakınlık kartı kredi kartı ve kontak tipi akıllı kartlar gibi daha önceki manyetik şeritli kart’ların gerektirdiği gibi bir okuyucu cihazına yerleştirilmeden okunabilen temassız akıllı kart’tır. Yakınlık kartları temassız kart teknolojilerinin parçasıdır. Bir süre elektronik okuyucunun yakınında tutularak kodlanmış bir numaranın tanımlanmasına olanak sağlarlar. Okuyucu genellikle kartın okunduğunu belirtmek için bir bip sesi veya başka bir ses çıkarır.