İçeriğe atla

Aritmetik dizi

Bir aritmetik ilerleme veya aritmetik dizi (AP), birbirini izleyen iki terim arasındaki farkın dizi boyunca sabit kaldığı bir sayı dizisidir. Sabit fark, bu aritmetik dizinin ortak farkı olarak adlandırılır. Örneğin, 5, 7, 9, 11, 13, 15, . . . ortak farkı 2 olan bir aritmetik dizidir.

Bir aritmetik dizinin ilk terimi ve ardışık terimlerin ortak farkı olmak üzere, dizinin . terimi şöyle ifade edilir:

Bir aritmetik dizinin sonlu bir parçasına sonlu aritmetik dizi denir ve kimi zaman sadece aritmetik dizi olarak adlandırılır. Sonlu bir aritmetik dizinin toplamına aritmetik seri denir.

Tarihi

Doğruluğu kesin olmayan bir rivayete göre,[1] ilkokula giden genç Carl Friedrich Gauss, 1'den 100'e kadar olan tam sayıların toplamını hesaplamak için, toplamdaki n/2 sayı çiftini her bir n + 1 çiftinin değerleriyle çarparak bu yöntemi yeniden keşfetmiştir. [] Ancak, bu rivayetin doğruluğu ne olursa olsun, Gauss bu formülü ilk keşfeden kişi değildir ve bazıları formülün kökeninin MÖ 5. yüzyılda Pisagorculara kadar uzandığını düşünmektedir.[2]

Benzer kurallar antik çağda Arşimet, Hypsicles ve Diophantus;[3] Çin'de Zhang Qiujian; Hindistan'da Aryabhata, Brahmagupta ve Bhaskara II;[4] Orta Çağ Avrupa'sında ise Alcuin,[5] Dicuil,[6] Fibonacci,[7] Sacrobosco[8] ve Tosafistler[9] olarak bilinen anonim Talmud yorumcuları tarafından bilinmekteydi.

Toplam

2 + 5 + 8 + 11 + 14 = 40
14 + 11 + 8 + 5 + 2 = 40

16 + 16 + 16 + 16 + 16 = 80

2 + 5 + 8 + 11 + 14 toplamının hesaplanması. Dizi ters çevrildiğinde ve terim terim kendisine eklendiğinde, ortaya çıkan dizi, içinde ilk ve son sayıların toplamına eşit (2 + 14 = 16) tek bir tekrarlanan değere sahiptir. Böylece 16 × 5 = 80, toplamın iki katıdır.

Sonlu bir aritmetik dizinin üyelerinin toplamına aritmetik seri denir. Örneğin, şu toplamı düşünün:

Bu toplam, eklenen terimlerin sayısı n alınarak (burada 5), dizideki ilk ve son sayıların toplamıyla çarpılarak (burada 2 + 14 = 16) ve 2'ye bölünerek hızlı bir şekilde bulunabilir:

Yukarıdaki durum, şu denklemi verir:

Bu formül herhangi bir ve gerçek sayısı için çalışır. Örneğin:

Türetme

1+2+...+n ilk tam sayılarının toplamını veren formülün animasyonlu ispatı.

Yukarıdaki formülü türetmek için aritmetik seriyi iki farklı şekilde ifade ederek başlayın:

Terimleri ters sırada yeniden yazın:

İki denklemin her iki tarafının karşılık gelen terimlerini ekleyin ve her iki tarafı da ikiye bölün:

Bu formül şu şekilde basitleştirilebilir:

Ayrıca, serinin ortalama değeri şu şekilde hesaplanabilir:  :

Formül, ayrık tekdüze bir dağılımın ortalamasına çok benzer.

Çarpım

Başlangıç elemanı a1, ortak farkları d ve toplamda n elemanlı sonlu bir aritmetik dizinin elemanlarının çarpımı aşağıdaki gibi kapalı bir ifade ile tanımlanır:

Buradaki Gama işlevini belirtir. Formül, 'nin negatif veya sıfır olduğu durumlarda geçerli değildir.

Bu, serinin çarpımının faktöriyel ile belirlenmiş olduğu gerçeğinin bir genellemesidir.

ve pozitif tam sayılar olmak üzere:

Türetme

artan faktoriyel anlamına gelir.

Yineleme formülü ile , karmaşık bir sayı için geçerlidir ,

,
,

böylece

için pozitif bir tam sayı ve pozitif bir karmaşık sayı

Böylece, eğer ,

,

ve son olarak:

Örnekler

Örnek

örnek alınırsa, olarak verilen aritmetik dizinin 50. terimine kadar olan terimlerin çarpımı:

Örnek 2

İlk 10 tek sayının çarpımı şöyle gösterilir. = 654.729.075

Standart sapma

Herhangi bir aritmetik dizinin standart sapması şu şekilde hesaplanabilir:

dizideki terim sayısıdır ve terimler arasındaki ortak farktır. Formül, ayrık bir tekdüze dağılımın standart sapmasına çok benzer.

Kesişim

Herhangi iki çift sonsuz aritmetik dizinin kesişimi ya boştur ya da Çin kalan teoremi kullanılarak bulunabilen başka bir aritmetik dizidir. İkili sonsuz aritmetik dizi ailesindeki her dizi çiftinin boş olmayan bir kesişimi varsa, o zaman hepsi için ortak bir sayı vardır; yani sonsuz aritmetik diziler bir Helly ailesi oluşturur.[10] Bununla birlikte, sonsuz sayıda sonsuz aritmetik dizinin kesişimi, kendisinin sonsuz bir dizi yerine tek bir sayı da olabilir.

Kaynakça

  1. ^ "Gauss's Day of Reckoning". American Scientist. 94 (3): 200. 2006. doi:10.1511/2006.59.200. 12 Ocak 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 16 Ekim 2020.  Birden fazla yazar-name-list parameters kullanıldı (yardım); Yazar |ad1= eksik |soyadı1= (yardım)
  2. ^ Høyrup, Jens (1 Kasım 2008). "The "Unknown Heritage": trace of a forgotten locus of mathematical sophistication". Archive for History of Exact Sciences (İngilizce). 62 (6): 613-654. doi:10.1007/s00407-008-0025-y. ISSN 1432-0657. 
  3. ^ Tropfke, Johannes (1924). Analysis, analytische Geometrie. Walter de Gruyter. ss. 3-15. ISBN 978-3-11-108062-8. 
  4. ^ Tropfke, Johannes (1979). Arithmetik und Algebra. Walter de Gruyter. ss. 344-354. ISBN 978-3-11-004893-3. 
  5. ^ Hadley, John; Singmaster, David (1992). "Problems to Sharpen the Young". The Mathematical Gazette. 76 (475): 102-126. doi:10.2307/3620384. ISSN 0025-5572. 6 Mart 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 5 Ağustos 2023. 
  6. ^ Ross, Helen Elizabeth; Knott, Betty Irene (4 Mayıs 2019). "Dicuil (9th century) on triangular and square numbers". British Journal for the History of Mathematics (İngilizce). 34 (2): 79-94. doi:10.1080/26375451.2019.1598687. ISSN 2637-5451. 5 Ağustos 2023 tarihinde kaynağından arşivlendi. Erişim tarihi: 5 Ağustos 2023. 
  7. ^ Sigler, Laurence E. (trans.) (2002). Fibonacci's Liber Abaci. Springer-Verlag. ss. 259-260. ISBN 0-387-95419-8. 
  8. ^ Katz, Victor J. (edit.) (2016). Sourcebook in the Mathematics of Medieval Europe and North Africa. Princeton University Press. ss. 91,257. ISBN 9780691156859. 
  9. ^ Stern, M. (1990). 74.23 A Mediaeval Derivation of the Sum of an Arithmetic Progression. The Mathematical Gazette, 74(468), 157-159. doi:10.2307/3619368
  10. ^ Grötschel, M.; Lovász, L., (Ed.) (1995), "Hypergraphs", Handbook of combinatorics, Vol. 1, 2, Amsterdam: Elsevier, ss. 381-432  Yazar |ad1= eksik |soyadı1= (yardım); r eksik |soyadı1= (yardım). See in particular Section 2.5, "Helly Property", pp. 393–394.

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Ki-kare dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında ki-kare dağılım özellikle çıkarımsal istatistik analizde çok geniş bir pratik kullanım alanı bulmuştur.

<span class="mw-page-title-main">Gama fonksiyonu</span>

Gama fonksiyonu, matematikte faktöriyel fonksiyonunun karmaşık sayılar ve tam sayı olmayan reel sayılar için genellenmesi olan bir fonksiyondur. Г simgesiyle gösterilir.

<span class="mw-page-title-main">Gamma dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

<span class="mw-page-title-main">Cauchy dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında Cauchy-Lorentz dağılımı bir sürekli olasılık dağılımı olup, bu dağılımı ilk ortaya atan Augustin Cauchy ve Hendrik Lorentz anısına adlandırılmıştır. Matematik istatistikçiler genel olarak Cauchy dağılımı adını tercih edip kullanmaktadırlar ama fizikçiler arasında Lorentz dağılımı veya Lorentz(yen) fonksiyon veya Breit-Wigner dağılımı olarak bilinip kullanılmaktadır.

<span class="mw-page-title-main">Laurent serisi</span>

Matematikte karmaşık bir fonksiyonun Laurent serisi bu fonksiyonun negatif dereceli terimler de içeren kuvvet serisi temsilidir. Karmaşık fonksiyonların Taylor serileri açılımının mümkün olmadığı durumlarda bu fonksiyonları açıklamak için de kullanılabilir. Laurent serisi ilk defa 1843'te Pierre Alphonse Laurent tarafından yayınlanmış ve bu matematikçinin adını almıştır. Karl Weierstrass 1841'de bu seriyi bulmuş olabilir ancak o zamanda ilk yayınlayan olamamıştır.

<span class="mw-page-title-main">Riemann zeta işlevi</span>

Matematikte Riemann zeta işlevi , Alman matematikçi Bernhard Riemann tarafından 1859'da bulunmuş olan ve asal sayıların dağılımıyla olan ilişkisinden ötürü sayı kuramında önemli yeri bulunan seçkin bir işlevdir. İşlev; fizik, olasılık kuramı ve uygulamalı istatistikte de kullanılmaktadır.

<span class="mw-page-title-main">Poligama fonksiyonu</span>

Matematik'te, poligama fonksiyonu' eşitliğin soludur ve türevin kuvvetine m konulduğunda eşitliğin sağ tarafındaki gama fonksiyonu'nun logaritma'sının (m + 1). türevi olarak tanımlanır.

<span class="mw-page-title-main">Digama fonksiyonu</span>

Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:

Matematiksel analizin sayı teorisinde Euler–Mascheroni sabiti matematiksel sabit'tir. Yunan harfi Yunanca: γ (gama) ile gösterilir.

<span class="mw-page-title-main">Ters Gama fonksiyonu</span>

Matematik'te ters gama fonksiyonu özel fonksiyon'dur.

Matematikte, Gauss sabiti, G ile gösterilir,1 ve karekök 2 aritmetik-geometrik ortalama'sının tersi olarak tanımlanır.

Matematik'te, Hurwitz zeta fonksiyonu, adını Adolf Hurwitz'ten almıştır, çoğunlukla zeta fonksiyonu denir. Formel tanımı için kompleks değişken s 'in Re(s)>1 ve q 'nun Re(q)>0 yardımıyla

Bohr-Mollerup teoremi, Matematiksel analizde adını Danimarkalı matematikçi Harald Bohr ve Johannes Mollerup'tan almıştır.

Matematikte, a Neumann polinomali,Carl Neumann tarafından özel durum için sunulan, Bessel fonksiyonu terimleri içerisinde fonksiyonların 1/z açılımında kullanılan bir polinomdur.

Lorentz faktörü veya Lorentz terimi bir cismin herhangi bir hıza sahip olmadığı durumla bir hıza sahip olması sırasında kütle, zaman ve uzay ölçümlerinde oluşacak ölçüm farklılıklarını açıklayan niceliktir. Lorentz faktörü, referans çerçeveleri arasında dönüşüm yapılabilmesini sağlayan Lorentz dönüşümünden doğar. Faktör, Lorentz elektrodinamiği içindeki erken görünümü yüzünden Hollandalı fizikçi Hendrik Lorentz adına ithaf edilmiştir.

Doğrusal cebirde veya daha genel ifade ile matematikte matris çarpımı, bir matris çiftinde yapılan ve başka bir matris üreten ikili işlemdir. Reel veya karmaşık sayılar gibi sayılarda temel aritmetiğe uygun olarak çarpma yapılabilir. Başka bir ifade ile matrisler, sayı dizileridir. Bu yüzden, matris çarpımını ifade eden tek bir yöntem yoktur. "Matris çarpımı" terimi çoğunlukla, matris çarpımının farklı yöntemlerini ifade eder. Matris çarpımının anahtar özellikleri şunlardır: Asıl matrislerin satır ve sütun sayıları, ve matrislerin girişlerinin nasıl yeni bir matris oluşturacağıdır.

Özel fonksiyonların önemli bir bölümünü oluşturan hipergeometrik fonksiyonlar matematik, fizik, mühendislik ve olasılıkta karşımıza çıkar.

Öklid'in teoremi, sayılar teorisinde temel bir ifade olup sonsuz sayıda asal sayı olduğunu ileri sürer. Teoremin iyi bilinen farklı ispatları bulunmaktadır.

Aşağıdaki matematiksel seriler listesi, sonlu ve sonsuz toplamlar için formüller içerir. Toplamları değerlendirmek için diğer araçlarla birlikte kullanılabilir.

Trigonometride, trigonometrik özdeşlikler trigonometrik fonksiyonları içeren ve eşitliğin her iki tarafının da tanımlandığı değişkenlerin her değeri için doğru olan eşitliklerdir. Geometrik olarak, bunlar bir veya daha fazla açının belirli fonksiyonlarını içeren özdeşliklerdir. Bunlar üçgen özdeşliklerinden farklıdır, bunlar potansiyel olarak açıları içeren ama aynı zamanda kenar uzunluklarını veya bir üçgenin diğer uzunluklarını da içeren özdeşliklerdir.