İçeriğe atla

Arşimet

Kontrol Edilmiş
Arşimet
Ἀρχιμήδης ὁ Συρακόσιος
Geometrik problemler üzerinde kafa patlatan yaşlı bir adamın resmi
Archimedes Thoughtful (Arşimet Düşünceli)
Domenico Fetti tarafından (1620)
Doğumy. MÖ 287
Siracusa, Sicilya
Ölümy. MÖ 212 (y. 75 yaşlarında)
Siracusa, Sicilya
Ölüm sebebiCinayet
Diğer ad(lar)ıArchimedes of Syracuse
VatandaşlıkAntik Syracuse
Tanınma nedeni
Liste
Kariyeri
DalıMatematik
Geometri
Fizik
Mühendislik
Astronomi
Mekanik
EtkilendikleriEudoxus
EtkiledikleriApollonius[2]
Hero
Pappus
Eutocius

Arşimet (Antik Yunanca: Ἀρχιμήδης, Arkhimedes, y. MÖ 287, Siracusa - y. MÖ 212 Siracusa), Antik Yunan[3] matematikçi, fizikçi, astronom, filozof ve mühendis.

Antik dünyanın ilk ve en büyük bilim insanı olarak kabul edilir. Hidrostatiğin ve mekaniğin temelini atmıştır.

Bir hamamda su ile yıkanırken bulduğu iddia edilen suyun kaldırma kuvveti bilime en çok bilinen katkısıdır. Bu kuvvet cismin batan hacmi, içinde bulunduğu sıvının yoğunluğu ve yer çekimi ivmesinin çarpımına eşittir. Ayrıca, pek çok matematik tarihçisine göre integral hesabın kaynağı da Arşimet'tir.

Hayatı

Arşimet yaklaşık MÖ 287 yılında bir liman şehri olan Siraküza'da doğdu. Bu tarihte Siraküza Magna Graecia'nın özerk bir kolonisiydi. Doğum tarihi, Rum tarihçi Ioannes Tzetzes'in Arşimet 75 yıl yaşadı ifadesine dayanmaktadır.[4] Kum Sayacı kitabında Arşimet, babasının adının Phidias olduğunu söyler. Astronom olan babası hakkında bilinen hiçbir bilgi yoktur. Plutarhos Paralel Hayatlar eserinde Arşimet'in Siraküza hükümdarı Kral II. Hiero ile akraba olduğunu yazar.[5] Arşimet'in bir biyografisi arkadaşı Heracleides tarafından yazıldı ancak bu çalışma kayboldu. Bu çalışmanın kaybolması hayatının ayrıntılarını belirsiz bıraktı.[6] Örneğin, evlenip evlenmediği ya da çocuğunun olup olmadığı bilinmiyor. Gençliğinde çağdaşları Eratosthenes ve Konon'un bulunduğu İskenderiye'de öğrenim görmüş olabilir. Konon'dan arkadaşı olarak bahseder ve iki çalışmasının (Mekanik Teoremler Yöntemi ve Sığır Problemi) başlangıcı Eratosthenes'e hitap etmektedir.[a]

Arşimet'in ölümü (1815), Thomas Degeorge[7]

Arşimet, General Marcus Claudius Marcellus komutasındaki Roma kuvvetlerinin Siraküza şehrini iki yıl süren bir kuşatmadan sonra ele geçirdiği İkinci Pön Savaşı sırasında yaklaşık MÖ 212 yılında öldü. Plutarhos tarafından söylenen popüler rivayete göre Arşimet, şehir ele geçirildiğinde matematiksel diyagram tasarlıyordu. Romalı bir asker gelip General Marcellus ile tanışmasını emretti ama Arşimet bu teklifi problem üzerinde çalışmayı bitirmesi gerektiğini söyleyerek reddetti. Asker buna öfkelendi ve Arşimet'i kılıcı ile öldürdü. Ayrıca Plutarhos'un, Arşimet'in ölümü hakkında daha az bilinen bir rivayeti vardır. Bu rivayet bir Roma askerine teslim olmaya çalışırken öldürülmüş olabileceğini akla getirir. Hikâyeye göre, Arşimet matematik aletleri taşıyordu. Asker aletlerin değerli eşya olabileceğini düşündü ve Arşimet'i öldürdü. General Marcellus anlatıldığına göre Arşimet'in ölümüne öfkelendi. General, Arşimet'in değerli bir bilimsel varlık olduğunu düşünüyordu ve zarar görmemesi için emir vermişti.[8] Marcellus Arşimet'ten "bir geometrik "Briareus" olarak bahseder.[9]

Arşimet'e atfedilen son söz, iddia edildiğine göre matematiksel çizimdeki çemberlere çalıştığı sırada Romalı asker tarafından rahatsız edilmesi kastedilerek "Çemberlerimi bozmayın"dır. Bu alıntı sıklıkla Latince "Noli turbare circulos meos" olarak ifade edilir. Ancak Arşimet'in bu kelimeleri söylediğine dair güvenilir bir kanıt yoktur ve Plutarhos tarafından söylenen rivayette de yoktur. Valerius Maximus MS 1. yüzyılda Unutulmaz İşler ve Sözler eserinde ifadeyi "...sed protecto manibus puluere 'noli' inquit, 'obsecro, istum disturbare'" – "...ama tozu elleriyle koruyarak 'Sana yalvarıyorum, onu bozma.' dedi" diye yazar. Bu ifade ayrıca Katarevusa Yunancası "μὴ μου τοὺς κύκλους τάραττε!" (Mē mou tous kuklous taratte!) olarak ifade edilir.[8]

Cicero Arşimet'in mezarının keşfinde (1805), Benjamin West

Arşimet'in mezarında, en sevdiği matematiksel ispatın çizimini gösteren bir heykel bulunur. Bu çizim aynı yükseklik ve çaptaki bir küre ve silindirden oluşur. Arşimet kürenin hacminin ve yüzey alanının, tabanları da dâhil olmak üzere silindirin üçte ikisine eşit olduğunu kanıtlamıştır. MÖ 75 yılında, Arşimet'in ölümünden 137 yıl sonra, Romalı hatip Cicero, Sicilya'da quaestor olarak görev yapıyordu. Arşimet'in mezarının hikâyelerini duymuştu ama yerli halktan hiçbiri ona yeri gösteremiyordu. Sonunda mezarı Siraküza'daki Agrigentine kapısının yanında ihmal edilmiş bir durumda ve çalılar arasında buldu. Cicero mezarı temizletti. Temizlikten sonra artık oyma eseri görebildi ve yazıt olarak eklenen dizeleri okuyabildi.[10] 1960'ların başında Siraküza'daki Hotel Panorama'nın avlusunda bir mezar bulundu ve bu mezarın Arşimet'in mezarı olduğu iddia edildi. Ancak bu iddianın doğru olması için ikna edici bir kanıt yoktu. Mezarının bugünkü yeri bilinmiyor.[11]

Arşimet yaşamının standart versiyonları, ölümünden çok sonra Antik Roma tarihçileri tarafından yazılmıştır. Polibios'un Tarih eserinde rivayet edilen Siraküza kuşatması, Arşimet'in ölümünden yaklaşık yetmiş yıl sonra yazıldı ve daha sonra Plutarch ve Titus Livius tarafından kaynak olarak kullanıldı. Arşimet'in şehri savunmak için yaptığı söylenen savaş makinelerine odaklanan bu eser, Arşimet'in kişiliği hakkında çok az bilgi verir.[12]

Buluşları

Mekanik

Arşimet'in mekanik alanında yapmış olduğu buluşlar arasında kaldıraçlar, makaralar, bileşik makaralar, sonsuz vidalar, hidrolik vidalar, rulmanlar ve yakan aynalar sayılabilir. Öyle ki Arşimet aynalar ile Roma gemilerini güneş ışınları ile yakmıştır. Bunlara ilişkin eserler verilmemiş, ancak matematiğin geometri alanına, fiziğin statik ve hidrostatik alanlarına önemli katkılarda bulunan pek çok eser bırakmıştır.

İlk defa denge prensiplerini ortaya koyan bilim insanı da Arşimet'tir. Bu prensiplerden bazıları şunlardır:

  1. Eşit kollara asılmış eşit ağırlıklar dengede kalır.
  2. Eşit olmayan ağırlıklar eşit olmayan kollarda aşağıdaki koşul sağlandığında dengede kalırlar: f1 • a = f2 • b

Bu çalışmalarına dayanarak söylediği "Bana bir dayanak noktası verin Dünya'yı yerinden oynatayım." sözü yüzyıllardan beri dillerden düşmemiştir.

Geometri

Geometriye yapmış olduğu en önemli katkılardan birisi, bir kürenin yüzölçümünün 4r2 ve hacminin ise 4/3 r3 eşit olduğunu kanıtlamasıdır. Bir dairenin alanının, tabanı bu dairenin çevresine ve yüksekliği ise yarıçapına eşit bir üçgenin alanına eşit olduğunu kanıtlayarak pi değerinin 3 +l/7 ve 3 +10/71 arasında bulunduğunu göstermiştir. Başka bir deyişle bu formülleri suyun hacim kullanma esnasında alabileceği özkütle çapıdır.

Matematik

Arşimet parlak matematik başarılarından biri de, eğri yüzeylerin alanlarını bulmak için bazı yöntemler geliştirmesidir. Bir parabol kesmesini dörtgenleştirirken sonsuz küçükler hesabına yaklaşmıştır. Sonsuz küçükler hesabı, bir alana tasavvur edilebilecek en küçük parçadan daha da küçük bir parçayı matematiksel olarak ekleyebilmektir. Bu hesabın çok büyük bir tarihi değeri vardır. Sonradan modern matematiğin gelişmesinin temelini oluşturmuş, Newton ve Leibniz'in bulduğu diferansiyel denklemler ve integral hesap için iyi bir temel oluşturmuştur. Arşimet, Parabolün Dörtgenleştirilmesi adlı kitabında, tüketme metodu ile bir parabol kesmesinin alanının, aynı tabana ve yüksekliğe sahip bir üçgenin alanının 4/3'üne eşit olduğunu ispatlamıştır.

Hidrostatik

Arşimet, kendi adıyla tanınan “sıvıların dengesi kanununu” da bulmuştur. Suya batırılan bir cismin taşırdığı suyun ağırlığı kadar kendi ağırlığından kaybettiğini fark ederek hamamdan "eureka" (buldum, buldum) diye haykırarak çırıl çıplak dışarı fırlaması, onunla ilgili en çok bilinen bir hikâyedir. Söylendiğine göre, bir gün Kral II Hieron yaptırmış olduğu altın tacın içine kuyumcunun gümüş karıştırdığından kuşkulanmış ve bu sorunun çözümünü Arşimet'e havale etmiştir. Bir hayli düşünmüş olmasına rağmen sorunu bir türlü çözemeyen Arşimet, yıkanmak için bir hamama gittiğinde, hamam havuzunun içindeyken ağırlığının azaldığını hissetmiş ve "evreka, evreka" diyerek hamamdan fırlamıştır. Arşimet'in bulduğu şey; su içine daldırılan bir cismin taşırdığı suyun ağırlığı kadar ağırlığını kaybetmesi ve taç için verilen altının taşırdığı su ile tacın taşırdığı su mukayese edilerek sorunun çözülebilmesi idi. Çünkü her maddenin özgül ağırlığı farklı olduğundan aynı ağırlıktaki farklı cisimler farklı hacme sahiptir. Bu nedenle suya batırılan aynı ağırlıktaki iki farklı cisim farklı miktarlarda su taşırırlar.

Eserleri

Archimēdous Panta sōzomena, 1615

Arşimet'in yapıtlarının çoğu Samoslu (Sisam) Konon ve Kireneli Erastosthenes gibi dönemin ünlü matematikçileriyle yazışma biçiminde ve tamamen kuramsal içeriktedir. Yapıtlarının dokuz tanesinin Yunanca asılları günümüze kadar ulaşmıştır. Yapıtları uzun yıllar karanlıkta kalmış; matematiğe katkısı yapıtlarının 8. ya da 9. yüzyılda Arapçaya çevrilmesine kadar gerçekleşememiştir. Örneğin Arşimet'in başka matematikçilere katkı sağlaması amacıyla yazdığı "Yöntem" isimli çok önemli bir eseri 19. yüzyıla kadar karanlıkta kalmıştır.

  • Düzlemlerin Dengesi Üzerine (On the Equilibrium of Planes) (2 cilt): Mekaniğin belli başlı prensipleri, geometri metotları ile açıklanır.
  • İkinci Derecede Paraboller (Quadrature of the Parabola)
  • Küre ve Silindir Yüzeyi Üzerine (On the Sphere and Cylinder) (2 cilt): Bir kürenin bir parçasının alanı, bir dairenin alanı, silindirin alanı ve bu cisimlerin alanlarının karşılaştırılması ile ilgili bilgiler vermiştir.
  • Spiraller Üzerine (On Spirals): Arşimet bu eserde spirali tanımlamış, spiralin yarıçap vektörünün uzunlukları ile açılarını incelemiş, vektörün tanjantını hesaplamıştır.
  • Konoidler ve Sferoidler Üzerine (On Conoids and Spheroids)
  • Yüzen Cisimler Üzerine (On Floating Bodies) (2 cilt): Hidrostatiğin temel prensipleri verilmiştir.
  • Dairenin Ölçülmesi (Measurement of a Circle)
  • Kum Hesaplayıcısı (The Sand Reckoner): Arşimet'in sayı sistemleri üzerine yazdığı ve büyük sayıları ifade etmek için oluşturduğu sistemi içerir.
  • Mekanik Teoremlerin Yöntemi (The Method of Mechanical Theorems): Ünlü dilbilimci Heiberg tarafından 1906 yılında, İstanbul'da eski parşömenler arasında (üzeri kazınmış ve sonra yeniden yazılmış olarak) bulunmuştur.

Ayrıca bakınız

Kavramlar
Kişiler

Kaynakça

  1. ^ Knorr, Wilbur R. (1978). "Archimedes and the spirals: The heuristic background". Historia Mathematica. 5 (1): 43-75. doi:10.1016/0315-0860(78)90134-9Özgürce erişilebilir. ISSN 0315-0860. "To be sure, Pappus does twice mention the theorem on the tangent to the spiral [IV, 36, 54]. But in both instances the issue is Archimedes' inappropriate use of a 'solid neusis,' that is, of a construction involving the sections of solids, in the solution of a plane problem. Yet Pappus' own resolution of the difficulty [IV, 54] is by his own classification a 'solid' method, as it makes use of conic sections." (p. 48) 
  2. ^ Heath, T. L. (1896). Apollonius of Perga: Treatise on Conic Sections with Introductions Including an Essay on Earlier History of the Subject. ss. lxiix,lxxxi,xlii-xliii,cxxii. 24 Haziran 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 25 Haziran 2021. 
  3. ^ "Archimedes (c.287 - c.212 BC)". 4 Ekim 2018 tarihinde kaynağından arşivlendi. Erişim tarihi: 11 Ağustos 2019. 
  4. ^ Heath, T.L., Works of Archimedes, 1897
  5. ^ Plutarch (Ekim 1996). Parallel Lives Complete e-text from Gutenberg.org. Project Gutenberg. 11 Temmuz 2007 tarihinde kaynağından arşivlendi. Erişim tarihi: 23 Temmuz 2007. 
  6. ^ O'Connor, John J.; Robertson, Edmund F., "Arşimet", MacTutor Matematik Tarihi arşivi 
  7. ^ "The Death of Archimedes: Illustrations". math.nyu.edu. New York University. 29 Eylül 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 14 Mart 2020. 
  8. ^ a b Rorres, Chris. "Death of Archimedes: Sources". Courant Institute of Mathematical Sciences. 10 Aralık 2006 tarihinde kaynağından arşivlendi. Erişim tarihi: 2 Ocak 2007. 
  9. ^ Mary Jaeger. Archimedes and the Roman Imagination, p. 113.
  10. ^ Rorres, Chris. "Tomb of Archimedes: Sources". Courant Institute of Mathematical Sciences. 9 Aralık 2006 tarihinde kaynağından arşivlendi. Erişim tarihi: 2 Ocak 2007. 
  11. ^ Rorres, Chris. "Tomb of Archimedes – Illustrations". Courant Institute of Mathematical Sciences. 2 Mayıs 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 15 Mart 2011. 
  12. ^ Rorres, Chris. "Siege of Syracuse". Courant Institute of Mathematical Sciences. 9 Haziran 2007 tarihinde kaynağından arşivlendi. Erişim tarihi: 23 Temmuz 2007. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Matematik</span> nicelik, yapı, uzay ve değişim gibi konularla ilgilenen bilim dalı

Matematik ; sayılar, felsefe, uzay ve fizik gibi konularla ilgilenir. Matematikçiler ve filozoflar arasında matematiğin kesin kapsamı ve tanımı konusunda görüş ayrılığı vardır.

<span class="mw-page-title-main">Mekanik</span> kuvvetlere veya yer değiştirmelere maruz kalan fiziksel cisimlerle ilgilenen bilim

Mekanik, fiziğin fiziksel nesnelerin hareketleriyle, özellikle kuvvet, madde ve hareket arasındaki ilişkilerle ilgili alanıdır. Nesnelere uygulanan kuvvetler yer değiştirmeler veya bir nesnenin çevresine göre konumunda değişikliklerle sonuçlanır. Fizik'in bu dalının kökenleri Antik Yunanistan'da Aristoteles ve Arşimet'in yazılarında bulunur.. Erken modern dönem sırasında, Galileo, Kepler ve Newton gibi bilim adamları şimdiki klasik mekaniğin temellerini attılar. Klasik mekanik, duran veya ışık hızından çok daha düşük hızlarla hareket eden cisimlerle ilgili klasik fizikin bir dalıdır. Kuantum aleminde olmayan cisimlerin hareketini ve üzerindeki kuvvetleri inceleyen bilim dalı olarak da tanımlanabilir. Alan bugün kuantum teorisi açısından daha az anlaşılmıştır.

<span class="mw-page-title-main">Öklid</span> Yunan matematikçi, aksiyomatik geometrinin mucidi

Öklid (Grekçe: Εὐκλείδης Eukleídēs; MÖ 330 - 275 yılları arasında yaşamış, İskenderiyeli bir matematikçidir. Megaralı Öklid'den ayırmak için bazen İskenderiyeli Öklid olarak anılır, genellikle "geometrinin kurucusu" veya "geometrinin babası" olarak anılan bir Yunan matematikçiydi. Ptolemy I döneminde İskenderiye'de aktifti. Elemanlar, yayınlandığı zamandan 19. yüzyılın sonlarına veya 20. yüzyılın başlarına kadar matematik öğretimi için ana ders kitabı olarak hizmet veren, matematik tarihindeki en etkili çalışmalardan biridir. Elemanlar’da, Öklid, küçük bir aksiyom setinden, şimdi Öklid geometrisi olarak adlandırılan şeyin teoremlerini çıkardı. Öklid ayrıca perspektif, konik kesitler, küresel geometri, sayı teorisi ve matematiksel kesinlik üzerine eserler yazdı.

<span class="mw-page-title-main">Arhitas</span> MÖ 4. yüzyıl Yunan filozof, matematikçi, astronom ve devlet adamı

Tarantolu Arhitas, erken Pisagorcu geleneğin son önemli temsilcisi matematikçi, devlet adamı ve filozoftur. Taranto'da 7 kez art arda komutan seçilmiş nüfuzlu bir siyaset adamı ve Platon'un (Eflatun) arkadaşıdır. Pisagorcu filozoflar arasında yer alan ve Sokrates'ten sonra yaşamış olmasına rağmen Sokrates öncesi düşünürler içinde ismi yer edinmiş olan filozof. Pisagorcular evreni matematiksel bir dizgeyle açıklama eğilimde olmuşlar ve bu yönde bir tür sezgiciliğe ve mistisizme varmışlardır. Demokritos'un düşüncelerinin aksine Pisagorcular evreni madde ile bir sayma eğilimde olmuşlar ve duyumların yanıltıcılığını öne sürmüşlerdir. Bu yönde bir eleştirel yaklaşım Arhitas ve yandaşlarında görülür. "Nesnelerin gerçek niteliklerini dokunma duyumuzla ya da başka duyumlarla bilemeyiz" önermesini geliştirmişlerdir. Matematik, fizik, müzik felsefesi, mekanik, siyaset alanlarında etkili olmuştur.

<span class="mw-page-title-main">Arşimet prensibi</span>

Arşimet prensibi, bir sıvı içindeki katı bir cismin, taşırdığı sıvının ağırlığına eşit bir batmazlık kuvveti ile yukarıya itildiğini belirtir. Ünlü bir deneyde Arşimet, aynı kütledeki altın bir taç ile bir altın külçesinin taşıracakları su miktarlarının aynı olması gerektiğini ileri sürmüş ve bunu doğrulayamayınca tacın saf altın olmadığını anlamıştır.

Matematiksel fizik, matematik ve fizik arasındaki alakayla ilgilinen bilimsel disiplindir. Matematiksel fiziğin neyi içerip içermediği ile ilgili tam bir mutabakat yoktur. Ancak Journal of Mathematical Physics konuyla ilgili bir tanım yapar: Matematiğin fiziksel sorunlara uygulanması ve fiziksel kuramlar için matematiksel yöntemlerin uygunluğunun geliştirilmesi.

<span class="mw-page-title-main">İsidoros (matematikçi)</span> Bizanslı Rum bilim insanı ve mimar

Miletli İsidoros, Bizans imparatoru Justinianus'un tarafından, Konstantinopolis'teki Ayasofya katedralini yeniden tasarlatmak için, Anthemios ile beraber görevlendirilen Yunan mimar ve matematikçiydi. Pek çok akademik disiplinle ilgilenmiş İsidoros, Arşimet'in önemli eserlerinin derlemesini ve bakımsızlıktan neredeyse yok olmak üzere olan Öklit'in Elementler'i kitabının XV numaralı cildinin düzenlemesini ve restoresini yapmıştır.

<span class="mw-page-title-main">Yunan matematiği</span> Eski Yunanların Matematiği

Yunan matematiği, Doğu Akdeniz kıyılarında MÖ 7. yüzyıldan MS 4. yüzyıla kadar uzanan Arkaik dönemden Helenistik ve Roma dönemlerine kadar yazılan matematik metinleri ile ortaya çıkan fikirleri ifade eder. Yunan matematikçiler, İtalya'dan Kuzey Afrika'ya tüm Doğu Akdeniz'e yayılmış şehirlerde yaşadılar, ancak kültür ve dil açısından birleştiler. "Matematik" kelimesinin kendisi Antik Yunancadan türemiştir: Grekçe: μάθημα: máthēma Yunanca telaffuz: [má.tʰɛː.ma] Yunanca telaffuz: [ˈma.θi.ma], "eğitim konusu" anlamına gelir. Kendi iyiliği için matematik çalışması ve genelleştirilmiş matematik teorilerinin ve kanıtlarının kullanılması, Yunan matematiği ile önceki uygarlıkların matematiği arasındaki önemli bir farktır.

<span class="mw-page-title-main">Hidrostatik</span>

Akışkan statiği ya da hidrostatik, hareketsiz akışkanlar üzerinde çalışmalar yapan akışkan mekaniğinin dalı. Hangi akışkanların durağan dengede hareketsiz kaldığıyla ilgili yapılan çalışmaları kabul eder ve akışkan dinamiğiyle karşılaştırıldığında hareket halindeki akışkanları inceler.

<span class="mw-page-title-main">Fizik tarihi</span> fizik biliminin tarihi

Fizik, felsefe ürünü bir çalışma alanıdır ve bu yüzden 19. yüzyıla kadar doğa felsefesi diye adlandırıldı. Ünlü fizik bilgini Isaac Newton (1642-1726) bile temel yapıtını "Doğa Felsefesinin Matematiksel İlkeleri" olarak adlandırmış ve kendisini de bir doğa filozofu olarak görmüştür. Günümüzde ise fizik; madde, enerji ve bunların birbiri arasındaki ilişkiyi inceleyen bir bilim dalı olarak tanımlanır. Fizik bir bakıma en eski ve en temel kuramsal bilimdir; onun keşifleri doğa bilimleri'nin her alanı hakkındadır çünkü madde ve enerji; doğanın temel ögeleridir. Diğer bilim dalları genellikle kendi alanlarıyla sınırlıdır ve fizikten sonradan ayrılıp bir bilim dalı olmaya hak kazanmış diye düşünülebilinir. 16. yüzyılda fizik doğa bilimlerinden ayrılmış, Rönesans dönemi sonrasında hızla artan bilgi birikimi ile mekanik, optik, akustik, elektrik gibi alt bilim dalları ortaya çıkmıştır. Fizik günümüzde klasik fizik ve modern fizik olarak ikiye ayrılır.

<span class="mw-page-title-main">Bonaventura Cavalieri</span>

Bonaventura Francesco Cavalieri İtalyan Matematikçi. ve cizvit din adamı. Fizikte optik ve hareket, kalkülüs hesabının başlangıcı olan "bölünebilirlikler" ve İtalya'ya logaritma hesabını getirmesi ile de iyi bilinmektedir. Geometri'de Katı Cisimlerin hacimleri konusunda geliştirdiği "Cavalieri Prensibi" adı ile anılan prensip ile integral hesaba giriş sağlaması ile meşhurdur. Cavalieri herhangi bir objenin hacminin, nesneden paralel, belirli aralıklarla kesilmiş 2 boyutlu kesitler sayesinde hesaplanabileceğini göstermiştir.

<span class="mw-page-title-main">Akışkanlar mekaniği tarihi</span>

Akışkanlar mekaniğinin tarihi, fizik ve mühendislik tarihinin temel bir koludur. Akışkanların hareketi ve onlara etki eden kuvvetlerin incelenmesi tarih öncesine kadar uzanmaktadır. İnsanın suya bağımlılığı, meteorolojik koşullar ve iç biyolojik süreçler nedeniyle sürekli bir evrim geçirmiştir.

<span class="mw-page-title-main">İskenderiyeli Pappus</span> MS. 3-4. yüzyıl Yunan matematikçi

İskenderiyeli Pappus (Grekçe: Πάππος ὁ Ἀλεξανδρεύς; yaklaşık MS. 290 - 350) antik çağın son büyük Yunan matematikçilerinden biridir. İskenderiye doğumlu Helenleşmiş bir Mısırlıydı. Synagoge (Συναγωγή) ya da Koleksiyon olarak da adlandırılan eseri ve Pappus teoremi ile bilinir.

Hazini veya Abdurrahman Hazinî, 11. ve 12. yüzyıl'da yaşamış astronomi ve matematik bilgini.

Kaunoslu Dionysodorus eski bir Yunan matematikçi.

Ascalonlu Eutocius, çeşitli Arşimet incelemeleri ve Apollonius'un Konikleri üzerine yorumlar yazan bir Yunan matematikçi.

Zenodorus çevresi sabit olan bir şeklin alanını ve sabit yüzeyli katı bir cismin hacmini inceleyen eski bir Yunan matematikçi.

Bu, "Antik Yunan matematikçilerinin zaman çizelgesi"dir..

<span class="mw-page-title-main">Geometri tarihi</span> Geometrinin tarihsel gelişimi

Geometri, mekansal ilişkilerle ilgilenen bilgi alanı olarak ortaya çıkmıştır. Geometri, modern öncesi matematiğin iki alanından biriydi, diğeri ise sayıların incelenmesi yani aritmetikti.

<span class="mw-page-title-main">Thomas L. Heath</span> İngiliz memur, matematikçi ve klasikçi (1861–1940)

Sör Thomas Little Heath bir İngiliz devlet memuru, matematikçi, klasikçi bilim insanı, eski Yunan matematik tarihçisi, çevirmen ve dağcıydı. Clifton Koleji'nde eğitim gördü. Heath İskenderiyeli Öklid'in, Pergalı Apollonius'un, Samoslu Aristarkos'un ve Syracuse'li Arşimet'in eserlerini İngilizceye çevirdi.