Fermilab, Amerika Birleşik Devletleri'nde Chicago kenti yakınlarındaki Batavia'da yer alan bir parçacık fiziği laboratuvarıdır. 1967'de National Accelerator Laboratory adıyla kurulmuş, 1974'te Nobel ödüllü fizikçi Enrico Fermi'nin anısına adı Fermi National Accelerator Laboratory olarak değiştirilmiştir.
Parçacık hızlandırıcı, yüklü parçacıkları yüksek hızlara çıkarmak ve demet halinde bir arada tutmak için elektromanyetik alanları kullanan araçların genel adıdır. Büyük hızlandırıcılar parçacık fiziğinde çarpıştırıcılar olarak bilinirler. Diğer tip parçacık hızlandırıcılar, kanser hastalıklarında parçacık tedavisi, yoğun madde fiziği çalışmalarında senkrotron ışık kaynağı olmaları gibi birçok farklı uygulamalarda kullanılır. Şu an dünya çapında faaliyette olan 30.000'den fazla hızlandırıcı bulunmaktadır.
Antimadde, karşı madde veya karşıt madde, maddenin ters ikizi. Paul Dirac denklemiyle ortaya çıkarılmış ve daha sonraki gözlemlerle de varlığı doğrulanmıştır. Antimadde en basit hâliyle normal maddenin zıddıdır. Antimaddenin atomaltı parçacıkları, normal maddeye göre zıt özellikler taşımaktadır. Bu atomaltı parçacıkların elektrik yükleri, normal maddenin atomaltı parçacıklarının tam tersidir. Antimadde, Büyük Patlama'dan sonra normal maddeyle birlikte oluşmuştur; fakat sebebinin ne olduğunu bilim insanları tam anlamıyla bilemeseler de evrende oldukça nadir bulunmaktadır.
Mezonlar, güçlü etkileşim ile bağlı bir kuark ve bir antikuarktan oluşan hadronik atomaltı parçacıklardır. Atomaltı parçacıklardan oluştuklarından mezonlar, kabaca bir femtometre kadarlık bir yarıçaplı fiziksel bir boyuta sahiptirler. Bütün mezonlar kararsızdırlar ve en uzun ömürlüsü mikrosaniyenin altında bir ömre sahiptir. Yüklü mezonların bozunmasıyla elektron ve nötrino oluşur. Yüksüz mezonların bozunmasıyla da fotonlar oluşur.
Tevatron, Amerika Birleşik Devletleri'nin Chicago şehrinin doğusundaki Fermilab'da bulunan dairesel bir parçacık hızlandırıcısıdır. 2011 yılına kadar, kendisine 150 GeV olarak yollanan proton ve antiprotonları hızlandırıp, 1.96 TeV kütle merkezi enerjisinde 2 ayrı noktada çarpıştırmaktaydı. Bu özellik onu 2010'da CERN'deki LHC hızlandırıcısı devreye girinceye kadar dünyadaki en yüksek enerjili çarpıştırıcı yapmıştı. Yapımı $120 milyona yakın tutan Tevatron 1983 yılında tamamen bitirildi. Üzerine 1983-2011 yılları arasında büyük miktarlarda yatırımlar yapıldı.
Antiparçacıklar her parçacığın karşı parçacığı vardır..
Owen Chamberlain Amerikalı fizikçidir.
Simon van der Meer, Hollandalı Nobel ödüllü fizikçi.
TNT eşdeğeri, patlamalarda salınan enerjinin miktarının ölçülmesinde kullanılan bir birimdir. TNT tonu 4,184 gigajoulelük enerji birimine eşittir ki bu değer de yaklaşık olarak bir ton ağırlığında TNT patlamasına eşittir. TNT megatonu ise 4,184 petajoulelük enerji birimine eşittir. Bununla birlikte TNT, atomik olmayan geleneksel patlayıcıların en etkilisi değildir. Örneğin dinamit, %60 daha fazla enerji yoğunluğu barındırır.
Carlo Rubbia, İtalyan Cumhuriyeti Liyakat Nişanı, CERN'de W ve Z parçacıklarının keşfindeki büyük katkılarından dolayı 1984 Nobel Fizik Ödülünü, Simon van der Meer ile paylaşan İtalyan parçacık fizikçisi ve mucit.
Van Allen Kuşakları, Güneş'ten ve diğer yıldızlardan yayılan zararlı ışınlara karşı kalkan işlevi gören tabakadır. Bu tabaka manyetizma sonucunda ortaya çıkmakta, Dünya'nın manyetik alanından kaynaklanmaktadır.
Emilio Gino Segrè, İtalyan fizikçidir.
Bruno Benedetto Rossi, İtalyan deney fizikçisi. Kozmik ışın ve parçacık fiziğine önemli katkıları vardır. 1927'de Bologna Üniversitesi'nden mezun oldu. Kozmik ışınlarla ilgilendi ve elektronik tesadüf devresini icat etti. Kozmik ışın ile ilgili bir çalışmayı yönetmek için Eritre'ye gitti ve çalışmayı batıdan gelen ışınların doğudan gelenlere göre daha geniş olduğunu gösterdi.
Antimadde roketi, güç kaynağı olarak antimadde kullanması önerilen bir roket sınıfıdır. Bu hedefi gerçekleştirmeye kalkışan birçok tasarım vardır. Bu tür roketlerin yararı madde-antimadde karışımının değişmez kütlesinin büyük bir kısmının antimadde roketlerinin diğer önerilen roket sınıflarından çok daha fazla enerji yoğunluğunun ve özgül itici kuvvetinin olmasını sağlayan enerjiye dönüşebilmesidir.
Parçacık fiziğinde elektrozayıf etkileşim, doğanın bilinen iki veya dört temel etkileşiminin birleşimin bir tanımıdır: elektromanyetizm ve zayıf etkileşim. Her gün düşük enerjilerde, bu iki kuvvet çok farklı oluşsa da, teori modelleri aynı kuvvetin iki farklı etkisi gibidir. Yukarıdaki birleştirme enerjisi, yaklaşık 100 GeV, tek bir elektrozayıf kuvvet oluşturabilir. Bu yüzden, eğer evren yeterince sıcaksa (Big Bang'den kısa bir sonra olan bir sıcaklık ortalama 1015 K), elektromanyetik kuvvet ve zayıf kuvvet birleşmiş bir elektrozayıf kuvvete dönüşür. Elektrozayıf dönem boyunca, zayıf kuvvet güçlü kuvvetten ayrılır. Kuark dönem boyunca, elektrozayıf kuvvet elektromanyetik ve zayıf kuvvetten ayrılır.
Hadronlaşma veya hadronizasyon, hadronların kuarklar ve gluonların dışında oluşma işlemidir. Bu olay, kuarklar ve gluanların oluştuğu bir parçacık çarpıştırıcıda yüksek enerjili bir çarpışma ile olur. Renk hapsi nedeni ile kuarklar ve hadronlar kendi başlarına var olamazlar. Standart Model'e göre, bunlar vakumdan spontane şekilde oluşmuş kuarklar ve antikuarklar ile birleşerek hadronları oluştururlar. Hadronlaşmanın kuantum renk dinamikleri henüz tam olarak anlaşılamamıştır ama birkaç olgu çalışmasında modellenip parametrize edilmiştir. Bu çalışmalardan biri Lund ip modelidir. Aynı zamanda uzun menzil kuantum renk dinamiği yaklaşım şemaları da mevcuttur.
Çift üretimi nötral bozondantemel parçacıkların ve bu parçacıkların antiparçacıklarının oluşması.Bir elektron ve bir pozitron oluşturmak için, bir müon ve bir antimüon veya bir proton ve bir antiprotonun oluşması örenkler arasındadır. Çift üretimi genellikle özellikle bir fotonun bir elektro-pozitron çiftinin bir çekirdeğe yakın bir konumda oluması anlamında kullanılır. Çift oluşumunun gerçekleşmesi için parçacıkların etkileşim enerjisinin her iki parçacığındinlenme kütle enerjisinden, yani eşik enerjisi, yüksek olması ve durumun hem enerji hem de momentum korunumuna müsaade etmesi gerekmektedir. Fakat, üretilmiş parçacıkların bütün korunmuş kuantum sayıları sıfıra eşit olmak zorundadır. Böylece oluşmuş parçacıklar birbirlerinin ters değerlerine sahip olmaları kuralına uymuş olurlar. Farzı misal, eğer bir parçacık +1 yüküne sahipse diğer parçacık −1 yüküne sahip olmalı veya eğer bir parçacık +1 garipliğe sahipse diğer −1 garipliğe sahip olmalıdır.
Antinötron, nötrondan sadece bazı özelliklerinin eşit büyüklükte fakat zıt işarete sahip olması nedeniyle farklılık gösteren, nötronun antiparçacığıdır. Nötron ile aynı kütleye sahiptir ve net elektrik yükü yoktur, ancak karşıt baryon sayısına sahiptir. Bunun nedeni antinötronun antikuarklardan oluşması ve nötronların da kuarklardan oluşmasıdır. Antinötron, bir yukarı antiquark ve iki aşağı antikuarktan oluşur.
Antihidrojen, hidrojenin antimadde karşılığıdır. Hidrojen atomu bir elektron ve protondan oluşurken, antihidrojen atomu bir pozitron ve antiprotondan oluşur. Bilim insanları antihidrojeni inceleyerek, baryon asimetrisi sorunu olarak bilinen gözlemlenebilir evrende neden antimaddeden daha fazla maddenin olduğu sorusuna ışık tutabileceğini ummaktadır.
Maurice Goldhaber, 1957'de nötrinoların negatif sarmallığa sahip olduğunu belirleyen Amerikalı fizikçidir.