İçeriğe atla

Annus Mirabilis makaleleri

Einstein, Annus Mirabilis makalelerini yazdığı 1905 yılında

Annus Mirabilis makaleleri (Latince: annus mīrābilis; mucize yıl), Albert Einstein tarafından 1905 yılında Annalen der Physik bilim dergisinde yayınlanan makalelerdir. Bu dört makale modern fiziğin temelinin oluşturulmasına büyük ölçüde katkıda bulunmuş ve uzay, zaman, kütle ve enerji üzerindeki görüşleri değiştirmiştir. Annus Mirabilis, İngilizcede Miracle Year veya Almancada Wunderjahr olarak adlandırılır ve mucize yıl anlamına gelir.

Geçmiş

Zamanında Einstein’ın evi olan Bern, Kramgasse’de Einsteinhaus. Makalelerinin çoğu birinci katta yer alan dairesinde yazılmıştır

Annalen der Physik için yapılan eleştirileri düzenli olarak okuması ve bunlara katkıda bulunmasına rağmen makalelerin yazıldığı dönemde Einstein eksiksiz bir bilimsel referans materyal setine kolaylıkla erişemiyordu. Ayrıca, teorilerini tartışabileceği bilimsel meslektaşlarının sayısı da çok azdı. Einstein, İsviçre, Bern’de Patent Bürosunda çalışmış ve daha sonra oradaki çalışma arkadaşlarından biri olan, Michele Besso'ya, "tüm Avrupa’da kendi fikirleri için daha iyi bir yansıtıcı bulamayacağını" söylemişti. Bunun dışında, çalışma arkadaşları ve kendinden menkul “Olimpiyat Akademisi”nin diğer üyeleri (Maurice Solovine ve Paul Habicht) ve karısı Mileva Marić'in Einstein’in çalışmaları üzerinde bazı etkileri olmakla birlikte, bunun ne kadar olduğu belirsizdir.

Bu makaleler yoluyla, Einstein çağın en önemli fizik soruları ve sorunlarının üstesinden gelmeyi başarmıştır. 1900’de, Lord Kelvin’in verdiği "Isı ve Işığın Dinamik teorisi üzerinde Ondokuzuncu Yüzyıl Bulutları" başlıklı derste fiziğin Michelson-Morley deneyi sonuçları ve kara cisim radyasyonu hakkında tatminkâr açıklamalarının olmadığı ileri sürülmüştür. Öne sürüldüğü gibi, özel görelilik Michelson-Morley deneylerinin sonuçlarına bir değer katmıştır. Einstein'ın fotoelektrik etki teorileri, Max Planck’ın başarılı kara cisim radyasyonu açıklamasında geliştirdiği kuantum teorisini genişletmiştir.

Özel görelilik gibi diğer çalışmalarıyla elde ettiği büyük şöhrete rağmen, fotoelektrik etki üzerindeki çalışması kendisine 1921 yılında Nobel Ödülü'nü kazandırmıştır: "Teorik fizik ve özellikle fotoelektrik etki yasasının keşfine yaptığı hizmetler için." Nobel Komitesi özel görelilik için deneysel onayı sabırla beklemiş, ancak Ives ve Stilwell (1938), (1941) ile Rossi ve Hall'ın (1941) zaman genişlemesi deneylerine kadar ortaya bir şey konmamıştır.

Makaleler

Fotoelektrik etki

18 Mart'ta ulaşan ve 9 Haziran'da yayınlanan "Işığın Oluşumu ve Dönüşümü Üzerine Sezgisel Bir Görüş" başlıklı makale, kuantum enerjisi fikrini ortaya koymuştur. Max Planck'ın daha önceki kara cisim radyasyonu yasasının derivasyonundan esinlenmiş olan bu fikir, ışık enerjisinin, kuantum olarak adlandırılan, farklı miktarlarda emilebileceği veya yayılabileceğini öngörür. Einstein şu ifadeyi kullanmıştır:


Fotoelektrik etkiyi açıklarken, Einstein'ın tanımladığı gibi enerjinin farklı paketçiklerden oluştuğu tezi, kara cisimlere de doğrudan uygulanabilir.

Işık paketçikleri fikri, James Clerk Maxwell’in elektromanyetik davranış denklemleri ve daha genel olarak, fizik sistemlerinde sonsuz bölünebilirlik varsayımından gelen ışığın dalga teorisiyle çelişmektedir.


Einstein fotoelektrik etkinin dalga boyuna ve dolayısıyla ışığın frekansına bağlı olduğunu belirtmiştir. Çok düşük frekansta, yoğun ışık dahi elektron üretmemiştir. Ancak, belli bir frekansa erişildiğinde, düşük yoğunluklu ışık bile elektron üretmiştir. Einstein bunu, h Plank sabiti ve f frekans olan ve hf olarak verilen, Plank’ın ışığın sadece enerji paketleri halinde emilebildiği hipoteziyle karşılaştırmıştır. Sonra, ışığın, enerjisi frekansa bağlı olan paketler halinde dolaştığını ve bu nedenle de sadece belli bir frekansın üzerindeki ışığın bir elektronu serbest bırakmak için yeterli enerji getirebileceğini öne sürmüştür.

Daha sonraki deneylerin Einstein’ın fotoelektrik etki denklemlerinin doğru olduğunu teyit etmesine rağmen açıklaması dünyaca kabul görmemiştir. Niels Bohr, 1922 Nobel konuşmasında, "Işık-kuantum hipotezi radyasyonun doğasına açıklık getiremiyor" demiştir.

Einstein 1921'de Nobel Ödülü'nü aldığında ve ödül davetinde fotoelektrik hakkındaki çalışmasından ismen söz edildiğinde, bazı fizikçiler (h f = ɸ + Ek) denkleminin doğru olduğunu ve ışık kuantumunun mümkün olduğunu kabul etmişlerdir. 1923'te Arthur Compton’un X-ışını saçılma deneyi bilim camiasının bu formülü kabul etmesine daha çok yardımcı olmuştur. Kuantum teorisi, kuantum mekaniğinin temel prensibi olan dalga-parçacık ikiliğinin güçlü bir göstergesi olmuştur. Fotoelektrik teorisinin eksiksiz bir tanımı kuantum mekaniğinin olgunlaşmasından sonra gerçekleşmiştir.

Brown hareketi

11 Mayıs’ta ulaşan ve 18 Temmuz’da yayınlanan "Durağan Bir Sıvı İçindeki Asıltı Parçacıklarının Moleküler Kinetik Kuramı Çerçevesindeki Hareketleri Üzerine" başlıklı makalesi Brown hareketinin olasılıksal bir modelini tariflemiştir:


Einstein parçacıkların ortalama kare yer değiştirmeleri için terimler türetmiştir. Makale, o dönemde henüz tartışmalı olan sıvıların kinetik teorisini kullanarak, ilk gözlemden onlarca yıl sonra bile tatminkâr bir açıklaması olmayan, atomun gerçekliğine deneysel bir kanıt sağlayan olguyu oluşturmuştur. Ayrıca, o dönemde tartışmalı olan istatistiksel mekaniklerin inanırlığını da sağlamıştır. Bu makaleden önce atomlar faydalı bir kavram olarak kabul edilmişlerdir ancak fizikçiler ve kimyacılar atomların gerçek birimler olup olmadığı hususunda tartışmaktaydılar. Einstein'ın atom davranışını istatistiksel tartışması deneyselcilere sıradan bir mikroskopla bakarak atomları sayabilme yolunu göstermiştir. Anti-atom okulunun önderlerinden birisi olan Wilhelm Ostwald, sonradan Arnold Sommerfeld'e Eienstein'ın eksiksiz Brown hareketi açıklamasından sonra atomların mevcudiyetine inandığını söylemiştir.

Özel görelilik

Einstein'ın bu yıl içindeki üçüncü makalesi olan "Hareketli Cisimlerin Elektrodinamiği", 30 Haziran'da ulaşmış ve 26 Eylül'de yayınlanmıştır. Bu makale, ışığın hızına yakın mekaniğe önemli değişiklikler getirerek, Maxwell’in elektrik ve manyetik denklemlerini mekanik yasalarıyla bağdaştırmıştır. Bu, daha sonra Einstein'ın özel görelilik kuramı olarak tanınmıştır.

Makalede sadece beş diğer bilim adamının, Isaac Newton, James Clerk Maxwell, Heinrich Hertz, Christian Doppler ve Hendrik Lorentz’in adından söz edilmektedir. Başka yayınları referans göstermez. Özel görelilik ve görelilik öncelik anlaşmazlığı tarihçesinde detaylı olarak verildiği üzere fikirlerin çoğu zaten diğerleri tarafından yayınlanmıştır. Ancak, Einstein’ın makalesi elektromanyetizma ile uyumlu zaman, uzaklık, kütle ve enerji teorisini ortaya koymuş fakat yer çekimi kuvvetini ihmal etmiştir.

O dönemde, Maxwell denklemlerinin, hareketli cisimlere uygulandığında asimetrikliklere (hareketli mıknatıs ve iletken problemi) yol açtığı ve Dünyanın "ışık ortamına" göreceli herhangi bir hareketinin keşfedilmesinin mümkün olmadığı bilinmekteydi. Einstein bu gözlemleri açıklamak için iki önerme ortaya koymaktadır. İlkinde, fizik yasalarının herhangi bir ivmesiz referans çerçevesi (eylemsiz referans çerçevesi) için aynı olduğunu ifade eden, görelilik prensibini elektrodinamik, optik ve mekanik yasalarına uygular. İkinci önermesinde ise Einstein, yayan cismin hareket durumundan bağımsız olarak, ışık hızının tüm eylemsiz referans çerçevelerinde aynı değere sahip olduğunu öngörmektedir.

Özel görelilik ise, bir ortam (su veya hava gibi) gerektiren diğer bilinen dalgalardan farklı olarak ışık dalgaları için bir iletkenlik ortamı (veya eter) belirlemeyen, Michelson-Morley deneyinin sonucuyla tutarlıdır. Einstein o deneyi bilmeyebilir ama şu ifadeyi kullanmıştır:


Işık hızı sabittir ve dolayısıyla gözlemcinin hareketiyle ilişkili değildir. Bu, Newton’un klasik mekaniğinde mümkün değildir. Einstein:


Birbirinden bağımsız olarak, George FitzGerald 1889'da ve Lorentz 1892'de, hareketli cisimlerin kendi açıklanabileceğini önermişlerdir. Makalenin bazı temel denklemleri hareketleri yönünde büzülmeleri halinde Michelson-Morley sonucunun, Lorentz dönüşümleri, Lorentz'in 1904 tarihli makalesinin geliştirilmiş haliyle, Joseph Larmor (1897, 1900), Hendrik Lorentz (1895, 1899, 1904) ve Henri Poincaré (1905) tarafından yayınlanmıştır. Einstein'ın sunumu FitzGerald, Larmor ve Lorentz'in açıklamalarından farklı ancak birçok açıdan Poincaré'in formülasyonu (1905) ile benzerdir.

Açıklaması iki aksiyomdan meydana gelmektedir. Birincisi, Galileo’nun birbirine göreceli sabit hızla hareket eden tüm gözlemciler için doğa kanunlarının aynı olması gerektiğidir. Einstein:


İkincisi, ışık hızının her gözlemci için aynı olduğu kuralıdır.


Günümüzde özel görelilik teorisi olarak adlandırılan teori, tüm gözlemcilerin eşdeğer olduğunu göz önüne alan daha sonraki genel görelilik teorisinden farklılaşmaktadır. Özel görelilik, Eienstein'ın 1905'te "keşif için olgun" yorumunu teyit ederek, dikkati çekecek kadar hızlı bir şekilde yaygın biçimde kabul edilmiştir. Fikirlerinin erken yayılmasında Max Planck'ın rolünü kabul eden Einstein 1913'te "Bu teorinin meslektaşların bu kadar hızlı dikkatini çekmesi kesinlikle onun [Planck] bu teoriye cesur ve sıcak bir biçimde müdahil olmasındandır" diye yazmıştır. Bundan başka, 1907'te Hermann Minkowski’nin teorisinin geliştirilmiş matematik formülasyonu da bu teorinin kabul görmesinde etkili olmuştur. Ayrıca ve en önemlisi, teori giderek artan biçimde doğrulayıcı deneysel kanıtlarla desteklenmiştir.

Kütle-enerji denkliği

21 Kasım’da Annalen der Physik, “Bir Cismin Eylemsizliği Enerji İçeriğine Bağlı mıdır?” başlıklı dördüncü makaleyi (27 Eylül'de ulaşmıştır) yayınlamıştır. Einstein bu makalede muhtemelen fizik alanındaki en meşhur denklem için bir kanıt geliştirmiştir: E = mc².

Einstein, klasik kinetik ve potansiyel enerjilerinden ayrı, çok büyük bir parçacığın bir enerjiye, "durgun enerji", sahip olduğunu gösterdiğinden eşitlik denkleminin çok önemli olduğunu düşünmüştür. Makale, James Clerk Maxwell ile Heinrich Rudolf Hertz’in incelemelerine ve ayrıca, Einstein’in söylediği gibi, görelilik aksiyomlarına dayanmaktadır.


Denklem eylemsiz cisim enerjisinin (E), kütlesi (m) çarpı ışık hızı (c) karesi, veya E= mc² olduğunu öngörür.


Kütle-enerji ilişkisi nükleer reaksiyonlarla ne kadar enerjinin açığa çıkacağı veya harcanacağını tahmin etmede kullanılabilir; tüm bileşenlerin kütlesi ve tüm ürünlerin kütlesi ölçülür ve ikisi arasındaki fark c² ile çarpılır. Sonuç genellikle ışık veya ısı biçiminde, ne kadar enerjinin açığa çıkacağı veya harcanacağını gösterir. Belli nükleer reaksiyonlara uygulandığında, denklem kimyasal patlayıcı yanmalarında olduğundan çok daha fazla, inanılmaz büyük miktarda ve kütle farkının ölçülmesi çok zor olan, enerjinin açığa çıkacağını gösterir. Bu, neden nükleer silahların bu kadar büyük miktarlarda enerji ürettiğini açıklar zira nükleer fisyon ve nükleer füzyon sırasında bağlanma enerjisini açığa çıkartırlar ve ayrıca atomaltı kütlenin büyük bir kısmını da enerjiye çevirirler.

Anma

Uluslararası Temel ve Uygulamalı Fizik Birliği (IUPAP), Einstein’ın 1905'teki ayrıntılı çalışmasının yayınlanmasının 100. yılını "2005 Dünya Fizik Yılı" olarak anmaya karar vermiştir. Bu daha sonra Birleşmiş Milletler tarafından da kabul edilmiştir.

Notlar

1.Mileva'nın aslında Einstein'ın bazı makalelerini onunla birlikte yazdığı iddiasının, genel olarak bir yanlış anlamaya dayandığı günümüzde kabul edilmektedir. 1955'te Einstein için yayınlanan bir ölüm ilanında, Abram Joffe,"1905'te, Annalen der Physik’de üç makale yer almıştır... O zaman kim olduğu bilinmeyen, bu makalelerin yazarı, Bern’deki Patent Bürosunda çalışan Einstein-Marity idi (Marity- karısının evlenmeden önceki soyadı olup, İsviçre adetlerine göre kocasının soyadına eklenmişti)." Joffe eş yazarlık iddiasında bulunmamış, yalnızca makalelerin kim olduğu bilinmeyen bir kişi tarafından yazıldığını ve Marity adının yazarın karısının evlenmeden önceki soyadı olduğunu ve İsviçre adetlerine göre yazarın soyadına eklendiğini belirtmiştir. Joffe'nin yorumu daha sonraları, karı kocanın eş yazar olduğunun iddia edildiği şeklinde yanlış aktarılmıştır.

2."Einstein’s Wife: The Mileva Question (Einstein’ın Karısı: Mileva Sorusu) (http://www.pbs.org/opb/einsteinswife/science/mquest.htm4 Ağustos 2013 tarihinde Wayback Machine sitesinde arşivlendi.)". Oregon Public Broadcasting, 2003.

3.Stachel, John, Einstein's Miraculous Year (Einstein'ın Mucize Yılı) (1905), pp. liv-lxiii (http://www.esterson.org/Stachel_Joffe.htm11 Kasım 2009 tarihinde Wayback Machine sitesinde arşivlendi.)

4.Calaprice, Alice, "The Einstein almanac" (Einstein Yıllığı). Johns Hopkins University Press, Baltimore, Md. 2005.

5.The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, Series 6, volume 2, page 1 (1901)

6.Ives, Herbert E.; Stilwell, G. R. (1938). "An experimental study of the rate of a moving clock" (Hareketli saatin hızına ilişkin deneysel bir çalışma). Journal of the Optical Society of America 28 (7): 215–226. Bibcode:1938JOSA...28..215I (http://adsabs.harvard.edu/abs/1938JOSA...28..215I5 Kasım 2015 tarihinde Wayback Machine sitesinde arşivlendi.). doi:10.1364/JOSA.28.000215 (https://dx.doi.org/10.1364%2FJOSA.28.000215).

7.Ives, Herbert E.; Stilwell, G. R. (1941). "An experimental study of the rate of a moving clock II" (Hareketli saatin hızına ilişkin deneysel bir çalışma-II). Journal of the Optical Society of America 31: 359–374. doi:10.1364/josa.31.000369 (https://dx.doi.org/10.1364%2Fjosa.31.000369).

8.Rossi, Bruno; Hall, David B. (February 1, 1941). "Variation of the Rate of Decay of Mesotrons with Momentum" (Mesotronların İvmeyle bozulmalarının değişim hızı). Physical Review 59 (3): 223–228. Bibcode:1941PhRv...59..223R (http://adsabs.harvard.edu/abs/1941PhRv...59..223R9 Ağustos 2018 tarihinde Wayback Machine sitesinde arşivlendi.). doi:10.1103/PhysRev.59.223 (https://dx.doi.org/10.1103%2FPhysRev.59.223).

9.Fiziksel sistemler hem dalga gibi hem de parçacık gibi özellikler gösterebilirler.

Einstein'ın Çalışmaları

{{Kaynakça|group=einstein|refs= Einstein, Albert (1905). "Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischenGesichtspunkt"(http://www.physik.uniaugsburg.de/annalen/history/einsteinpapers/ 1905_17_132148.pdf) (PDF). Annalen der Physik 17 (6): 132–148. Bibcode:1905AnP...322..132E (http://adsabs.harvard.edu/abs/1905AnP...322..132E29 Ekim 2015 tarihinde Wayback Machine sitesinde arşivlendi.). doi:10.1002/andp.19053220607 (https://dx.doi.org/10.1002%2Fandp.19053220607). Retrieved 20080218.

Türkçesi: • "Işığın oluşumu ve dönüşümü üzerine sezgisel bir görüş". (http://www.physik.fuberlin.de/~kleinert/files/eins_lq.pdf[])". Dirk ter Haar tarafından İngilizceye tercüme edilmiştir. • "Işığın oluşumu ve dönüşümü üzerine sezgisel bir görüş". Vikikaynak tarafından tercüme edilmiştir.

2. Einstein, Albert (1905). "Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegun von in ruhenden Flüssigkeiten suspendierten Teilchen "(http://www.physik.uniaugsburg.de/21 Ekim 2016 tarihinde Wayback Machine sitesinde arşivlendi. annalen/ history/ einsteinpapers/1905_17_549560.pdf) (PDF). Annalen der Physik 17 (8): 549–560. Bibcode:1905AnP...322..549E (http://adsabs.harvard.edu/abs/1905AnP...322..549E29 Ekim 2015 tarihinde Wayback Machine sitesinde arşivlendi.). doi:10.1002/andp.19053220806(https://dx.doi.org/10.1002%2Fandp.19053220806). Retrieved 2008-08-25.

Türkçesi: • "Brown hareketi teorisi üzerine incelemeler". (http://users.physik.fuberlin.de/~kleinert/files/eins_brownian.pdf[])". A.D.Cowper tarafından İngilizceye tercüme edilmiştir.

3. Einstein, Albert (19050630)."Zur Elektrodynamik bewegter Körper". Annalen der Physik 17 (10): 891–921. Bibcode:1905AnP...322..891E (http://adsabs.harvard.edu/abs/1905AnP...322..891E29 Ekim 2015 tarihinde Wayback Machine sitesinde arşivlendi.). doi:10.1002/andp.19053221004 (https://dx.doi.org/10.1002%2Fandp.19053221004). See also a digitizedversion at Wikilivres:Zur Elektrodynamik bewegter Körper.

Türkçesi: • "Hareketli cisimlerin elektrodinamiği üzerine". (http://www.fourmilab.ch/etexts/einstein/specrel/www/14 Ocak 2013 tarihinde Wayback Machine sitesinde arşivlendi.)". George Barker Jeffery ve Wilfrid Perrett tarafından tercüme edilmiştir. The Principle of Relativity (Görelilik Prensibi), Londra: Methuen and Company, Ltd. (1923) "Hareketli cisimlerin elektrodinamiği üzerine". Megh Nad Saha tarafından tercüme edilmiştir. The Principle of Relativity: Original Papers by A. Einstein and H. Minkowski (Görelilik prensibi: A.Einstein ve H.Minkowski'nin orijinal makaleleri), University of Calcutta, 1920, pp. 1–34:

4. Einstein, Albert (1905). "Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?" (http://www.physik.uniaugsburg.de/annalen/history/einsteinpapers/1905_18_639641.pdf) (PDF). Annalender Physik 18 (13): 639–641. Bibcode:1905AnP...323..639E (http://adsabs.harvard.edu/abs/1905AnP...323..639E29 Ekim 2015 tarihinde Wayback Machine sitesinde arşivlendi.). doi:10.1002/andp.19053231314 (https://dx.doi.org/10.1002%2Fandp.19053231314). Retrieved 20080218. Türkçesi: • "Bir cismin eylemsizliği enerji içeriğine mi bağlıdır?" (http://www.fourmilab.ch/etexts/einstein/E_mc2/www/2 Mart 2019 tarihinde Wayback Machine sitesinde arşivlendi.)". George Barker Jeffery ve Wilfrid Perrett tarafından tercüme edilmiştir. The Principle of Relativity (Görelilik Prensibi), Londra: Methuen and Company, Ltd. (1923).

Kaynakça

  • Stachel, John, et al., Einstein's Miraculous Year. (Einstein’ın Mucize Yılı) Princeton University Press, 1998. ISBN 0691059381
  • Renn, Jürgen ve Dieter Hoffmann, "1905 — a miraculous year". (1905- mucize bir yıl) 2005 J. Phys. B: At. Mol. Opt.Phys. 38 S437S448 (Max Planck Institute for the History of Science) Basım 9 (14 Mayıs 2005)

Dış bağlantılar

Annus Mirabilis makalelerinin derlemesi ve İngilizce tercümeleri (http://users.physik.fuberlin.de/[] ~kleinert/ files/) Alınan kaynak: "http://en.wikipedia.org/w/index.php?başlık=Annus_Mirabilis_papers&oldid=662244008"

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Albert Einstein</span> Almanya doğumlu fizikçi (1879–1955)

Albert Einstein, Almanya doğumlu teorik fizikçi ve bilim insanı. Tüm zamanların en iyi fizikçilerinden birisi olarak kabul edilen Albert Einstein, en çok görelilik teorisini geliştirmesiyle tanınır. Aynı zamanda kuantum mekaniğinin gelişimine önemli ölçüde katkılarda bulunmuştur. Kendisi tarafından bulunan ve bilim dünyasında yeni bir çığır açan kütle-enerji denkliği formülü E = mc2 dünyanın en ünlü denklemi olarak adlandırılmıştır. Fizik ve matematik alanına sağladığı katkılardan dolayı ve fotoelektrik etki yasasının keşfi sebebiyle 1921 yılında Nobel Fizik Ödülü'ne layık görüldü. 1999 yılında Time dergisi tarafından yüzyılın en önemli kişisi seçilmiştir.

<span class="mw-page-title-main">Özel görelilik</span> izafiyet teorisi, uzay ve zaman arasındaki ilişkiyi açıklayan bir bilimsel teoridir

Fizikte, özel görelilik teorisi veya izafiyet teorisi, uzay ve zaman arasındaki ilişkiyi açıklayan bir bilimsel teoridir. Albert Einstein'ın orijinal çalışmalarında teori, iki varsayıma dayanmaktadır:

  1. Fizik yasaları, tüm süredurum referans çerçevelerinde değişmezdir.
  2. Işık kaynağının veya gözlemcinin hareketinden bağımsız olarak vakumdaki ışığın hızı, tüm gözlemciler için aynıdır.

Dalga-parçacık ikililiği teorisi tüm maddelerin yalnızca kütlesi olan bir parçacık değil aynı zamanda da enerji transferi yapan bir dalga olduğunu gösterir. Kuantum mekaniğinin temel konsepti, kuantum düzeyindeki objelerin davranışlarında ‘’parçaçık’’ ve ‘’dalga’’ gibi klasik konseptlerin yetersiz kalmasından dolayı bu teoriyi işaret eder. Standart kuantum yorumları bu paradoksu evrenin temel özelliği olarak açıklarken, alternatif yorumlar bu ikililiği gelişmekte olan, gözlemci üzerinde bulunan çeşitli sınırlamalardan dolayı kaynaklanan ikinci dereceden bir sonuç olarak açıklar. Bu yargı sıkça kullanılan, dalga-parçacık ikililiğinin tamamlayıcılık görüşüne hizmet ettiğini, birinin bu fenomeni bir veya başka bir yoldan görebileceğini ama ikisinin de aynı anda olamayacağını söyleyen Kopenhag yorumu ile açıklamayı hedefler.

Fotoelektrik etki ya da fotoemisyon, ışık bir maddeyi aydınlattığında elektronların ya da diğer serbest taşıyıcıların ortaya çıkmasıdır. Bu bağlamda ortaya çıkan elektronlar, fotoelektronlar olarak adlandırılır. Bu olay genellikle elektronik fiziğinde hatta kuantum kimyası ya da elektrokimya gibi alanlarda çalışılır.

<span class="mw-page-title-main">Hendrik Lorentz</span> Hollandalı fizikçi (1853–1928)

Hendrik Antoon Lorentz, Hollandalı fizikçidir. Zeeman etkisini aydınlattığı için 1902 Nobel Fizik Ödülü'nü Pieter Zeeman ile paylaştı.

<span class="mw-page-title-main">Teorik fizik</span> fizik biliminin bir branşı

Teorik fizik, fiziğin matematiksel modellemeler ve fiziksel nesnelerin soyutlandırılmaları çalışmaları ve doğa olaylarını açıklayan, gerçekselleştiren ve tahmin yürüten fizik dalıdır. Bu deneysel fiziğin zıttıdır ki deneysel fizik araçlarla bu olayları soruşturur.

<span class="mw-page-title-main">Kuantum mekaniği</span> atom altı seviyede çalışmalar yapan bilim dalı

Kuantum mekaniği veya kuantum fiziği, atom altı parçacıkları inceleyen bir temel fizik dalıdır. Nicem mekaniği veya dalga mekaniği adlarıyla da anılır. Kuantum mekaniği, moleküllerin, atomların ve bunları meydana getiren elektron, proton, nötron, kuark, gluon gibi parçacıkların özelliklerini açıklamaya çalışır. Çalışma alanı, parçacıkların birbirleriyle ve ışık, x ışını, gama ışını gibi elektromanyetik ışınımlarla olan etkileşimlerini de kapsar.

<span class="mw-page-title-main">Görelilik ilkesi</span> Fizik yasalarının tüm referans çerçevelerinde aynı olması gerektiğini belirten fizik ilkesi

Görelik teorisi ya da basitçe fizikte görelilik genellikle Albert Einstein'ın iki teorisini kapsar. Bunlar özel görecelik ve genel göreceliktir.

Modern fizik, klasik fizik ile tanımlanamayan olayları açıklamak üzere ortaya atılmış teorilerin tümüdür. Einstein'ın özel görelilik kuramından, Max Planck'ın kara cisim ışıması kuramına; Schrödinger'in kedisinden, kuark ve bozonlara kadar her şey modern fizik adı altında buluşur.

<span class="mw-page-title-main">Klasik fizik</span> fizik dalı

Klasik fizik tamamlanmış veya uygulanabilir olan fiziğin, eski tarihlerde düşünülmüş modern teorilerle ilgilenir. Şu an kabul edilmiş bir teori modern sayılıyorsa ve o teorinin giriş cümlelerinde başlıca paradigma değişiminden bahsediliyorsa, eski teorilere genellikle “klasik” denilir. Bir klasik teorinin tanımı aslında içeriğine bağlıdır. Klasik fizik kavramı, modern fizik için fazlasıyla karmaşık olan belirli durumlarda kullanılır.

Kuantum mekaniğinin tarihi modern fizik tarihinin önemli bir parçasıdır. Kuantum kimyası tarihi ile iç içe olan kuantum mekaniği tarihi özünde birkaç farklı bilimsel keşif ile başlar; 1838’de Michael Faraday tarafından elektron demetlerinin keşfi, Gustav Kirchhoff tarafından 1859-60 kışı siyah cisim ışıması problemi beyanı, Ludwig Boltzmann’ın 1877 yılındaki fiziksel bir sistemin enerji seviyelerinin ayrıklardan olabileceği önerisi, 1887 yılında Heinrich Hertz’in fotoelektrik etkiyi keşfetmesi ve Max Planck’ın 1900 yılında ileri sürdüğü, herhangi bir enerji yayan atomik sisteminin teorik olarak birkaç farklı “enerji elementi” ε (epsilon) ne bölünebilmesi, bu enerji elementlerinden her birinin frekansına ν orantılı olması ve ayrı ayrı enerji üretebilmesi hipotezi, aşağıdaki formülle gösterilmiştir;

19. yüzyılda, ışığın yayılması için varsayımsal aracı olarak esîr teorisi yaygın olarak tartışıldı. Bu tartışmanın önemli bir parçası, bu ortama göre Dünya'nın hareket durumu ile ilgili soru oldu. Esîr çekim hipotezi esîrin hareket eden madde tarafından çekildiği ya da birlikte sürüklendiği ile ilgilenir. İlk değişkene göre Dünya ve esîr arasında bağıl bir hareket yoktur; ikinciye göre bağıl hareket vardır ve böylece ışık hızı, Dünya yüzeyinde ölçülen hareket hızına("esîr rüzgarı") dayanır. Özgül esîr modellerini bulan Augustin-Jean Fresnel tarafından 1818 yılında esîrin maddeyle beraber sürüklendiğini önermiştir. Diğer model George Stokes tarafından 1845 yılından ortaya atılan esîrin maddenin içinde ya da civarında sürüklenmesidir.

Özel görelilik kuramı tarihi, birçok teorik sonuçtan ve Albert A. Michelson, Hendrik Lorentz, Henri Poincaré ve diğerleri tarafından elde edilmiş ampirik bulgulardan oluşmaktadır. Tüm bunlar Albert Einstein ve daha sonrasında Max Planck, Hermann Minkowski ve diğerleri tarafından önerilen özel görelilik kuramının bir sonucudur.

<span class="mw-page-title-main">Fotomultiper tüp</span>

Fotomultiper tüpler (kısaca fotomultiperler veya PMTs), vakum tüp ailesinin bir üyesidir ve vakum tüplerden özel olarak çok daha hassas bir ışığın ultraviyole, görülebilir ve yakın kızılötesi dalga boylarındaki elektromanyetik spektrumunu kapsayan sensöre sahiptir. Bu dedektörler gelen ışıktan kaynaklanan akımı 100 milyon kat kadar katlarlar. Dinot katlama sürecinde fotonların tek tek gözlemlenmesi mümkün olur ve ışığın akısı çok düşüktür. Çoğu vakum tüpünün aksine modası geçmiş değillerdir ve halen kullanılmaktadır.

Genel görelilik, Albert Einstein tarafından 1907-1915 yılları arasında geliştirilmiş ve 1915’ten sonra da genel göreliliğe pek çok kişi tarafından katkıda bulunulmuştur. Genel göreliliğe göre, kütleler arasında gözlemlenen kütlesel çekim kuvveti, bu kuvvetlerin uzay ve zamanı bükmesinden kaynaklanmaktaydı. 

<span class="mw-page-title-main">Görelilik teorisi</span> zamanın göreceli olduğunu söyleyen teori

Görelilik teorisi, Albert Einstein'ın çalışmaları sonucu önerilen ve yayınlanan, özel görelilik ve genel görelilik adlarında birbirleriyle ilişkili iki teorisini kapsar. Özel görelilik, yer çekiminin yokluğunda tüm fiziksel fenomenler için geçerlidir. Genel görelilik, yer çekimi yasasını ve bu yasanın diğer doğa kuvvetleri ile ilişkisini açıklar. Astronomi de dahil olmak üzere kozmolojik ve astrofiziksel alem için geçerlidir.

<i>Annalen der Physik</i>

Annalen der Physik, fizik hakkındaki en eski bilimsel dergilerden biridir ve 1799 yılından beri yayımlanmaktadır. Dergi; deneysel, teorik, uygulamalı, matematiksel fizik ve ilgili alanlarda özgün, hakemli makaleler yayımlamaktadır. Şu anki baş editör, Stefan Hildebrandt'tır. 2008'den önce ISO 4 kısaltması Ann. Phys. (Leipzig) olan dergi 2008 yılından sonra kısaltma olarak Ann. Phys. (Berl.) kullanmaya başlamıştır.

<span class="mw-page-title-main">Kuantum termodinamiği</span>

Kuantum termodinamiği, iki bağımsız fiziksel teori olan termodinamik ve kuantum mekaniği arasındaki ilişkilerin incelenmesidir. Bu iki bağımsız teori, ışık ve maddenin fiziksel olaylarını ele alır. 1905'te Albert Einstein, formülünü elde ederek, termodinamik ve elektromanyetizma arasındaki tutarlılık gereksinimi dolayısıyla ışığın kuantumlanıyor olması gerektiği sonucuna vardı. Einstein'ın bu durumu ortaya koyduğu makale, kuantum teorisinin şafağıdır. Kuantum teorisi, Einstein'ın makalesinin yayımlanmasını takip eden birkaç on yıl içerisinde bağımsız bir dizi kuralla kabul gören bir teori hâline geldi. Kuantum termodinamiği, kuantum mekaniğinden termodinamik yasaların ortaya çıkışını ele almaktadır. Termodinamik dengede bulunmayan dinamik süreçleri ele alışında, istatistiksel kuantum mekaniğinden farklılık gösterir. Buna ek olarak, kuantum termodinamiği teorisinin tek başına bir kuantum sistemine uygulanabilir olması için bir arayış vardır.

Fizikte, yerellik ilkesi, bir nesnenin yalnızca yakın çevresinden doğrudan etkilendiğini belirtir. Yerellik ilkesini içeren bir teorinin "yerel teori" olduğu söylenir. Bu, anlık veya uzaktan "yerel olmayan" eylem kavramına bir alternatiftir. Yerellik, klasik fiziğin alan teorilerinden gelişti. Buradaki fikir, bir noktadaki bir nedenin başka bir noktada bir etkiye sahip olması için, bu noktalar arasındaki boşluktaki bir şeyin eyleme aracılık etmesi gerektiğidir. Bir etki uygulamak için, dalga veya parçacık gibi bir şey, iki nokta arasındaki boşluktan geçerek etkiyi taşımalıdır.