Genetik ya da kalıtım bilimi, biyolojinin organizmalardaki kalıtım ve genetik varyasyonu inceleyen bir dalıdır. Türkçeye Almancadan geçen genetik sözcüğü 1831 yılında Yunanca γενετικός - genetikos ("genitif") sözcüğünden türetildi. Bu sözcüğün kökeni ise γένεσις - genesis ("köken") sözcüğüne dayanmaktadır.
Proteinler, bir veya daha fazla uzun amino asit artık zincirini içeren büyük biyomoleküller ve makromolekül'lerdir. Proteinler organizmalar içinde, hücrelere yapı ve organizmalar sağlayarak ve molekülleri bir konumdan diğerine taşıyarak metabolik reaksiyonları katalizleme, DNA kopyalama, uyaranlara yanıt verme dahil olmak üzere çok çeşitli işlevler gerçekleştirir. Proteinler, genlerinin nükleotit dizisi tarafından dikte edilen ve genellikle faaliyetini belirleyen özel 3D yapıya protein katlanmasıyla sonuçlanan amino asit dizilimlerinde birbirlerinden farklıdır.
Mutasyon ya da değişinim, bir canlının genomu içindeki DNA ya da RNA diziliminde meydana gelen kalıcı değişmelerdir. Mutasyona sahip bir organizma ise mutant olarak adlandırılır.
Ribozom, tüm canlı hücrelerde bulunan karmaşık moleküler yapıya sahip ve protein oluşturma sürecinde hayati bir rol oynayan bir organeldir. Bu süreç, mRNA çevirisi olarak bilinen bir biyolojik mekanizma aracılığıyla gerçekleşir. Kısaca ribozomlar, haberci RNA (mRNA) molekülleri tarafından sağlanan talimatları takip ederek amino asitleri birbirine bağlar ve polipeptit adı verilen amino asit zincirlerini oluşturur.
Mesajcı RNA (mRNA), sentezlenecek bir proteinin amino asit dizisine karşılık gelen kimyasal şifreyi taşıyan bir moleküldür. mRNA, bir DNA kalıptan transkripsiyon yoluyla sentezlenir ve protein sentez yeri olan ribozomlara, protein kodlayıcı bilgiyi taşır. Burada, çevirim (translasyon) süreci sonucu, RNA polimerindeki bilgi ile bir amino asit polimeri üretilir. Nükleik asitlerin amino asit dizilerine karşılık gelen bölgelerindeki her üç baz, proteindeki bir amino asite karşılık gelir. Bu üçlülere kodon denir, her biri bir amino asit kodlar, bitiş kodonu ise protein sentezini durdurur. Bu işlem iki diğer RNA türünü daha gerektirir: taşıyıcı RNA (tRNA) kodonun tanınmasına aracılık eder ve ona karşılık gelen amino asiti getirir; ribozomal RNA (rRNA) ise ribozomdaki protein imalat mekanizmasının kataliz merkezidir.
Taşıyıcı RNA hücrelerde protein sentezi sırasında büyüyen polipeptit zincirine spesifik bir amino asit ekleyen küçük bir RNA molekülüdür. Amino asidin bağlanması 3' ucundadır. Bu kovalent bağlantı aminoasil tRNA sentetaz tarafından katalizlenir. Ayrıca, antikodon olarak adlandırılan üç bazlık bir bölge vardır, bu bölge mRNA üzerinde kendisine karşılık gelen üç bazlık bir kodon bölgesi ile baz eşleşmesi yapar. Her tip tRNA molekülü sadece tek tip bir amino asite bağlanabilir, ama genetik kod aynı amino asite karşılık gelen birden çok kodon bulunduğu için, farklı antikodonlara sahip tRNA'lar aynı amino asidi taşıyabilir.
Ribozomal RNA (rRNA), ribozomlarda bulunan bir RNA tipidir, ribozomun protein senteziyle ilişkili katalitik fonksiyonundan sorumludur. Ribozomal RNA'nın görevi, mRNA'daki bilginin translasyon süreci sırasında amino asit dizisine çevrilmesi için taşıyıcı RNA (tRNA) ile etkileşmek ve uzayan peptit zincirine amino asit takmaktır. Hücre sitoplazmasında serbest halde bulunan RNA'nın %80'i rRNA'dan oluşur.
Protein biyosentezi, hücrenin protein sentezlenmesi için gereken bir biyokimyasal süreçtir. Bu terim bazen sadece protein translasyonu anlamında kullanılsa da transkripsiyon ile başlayıp translasyonla biten çok aşamalı bir süreçtir. Prokaryotlarda ve ökaryotlarda ribozom yapısı ve yardımcı proteinler bakımından farklılık göstermesine karşın, temel mekanizma korunmuştur.
Translasyon, transkripsiyon sonucu oluşan mRNA'lardaki koda uygun olarak ribozomlarda gerçekleştirilen amino asit zinciri veya polipeptit sentezi sürecidir, daha sonra üretilen amino asit zinciri veya polipeptit uygun bir şekilde katlanarak etkin bir protein haline gelmektedir. Translasyon, protein biyosentezinin ilk aşamasıdır. 4 harfli DNA dilindeki mesajın 20 harfli amino asid diline çevrilmesinden ötürü, İngilizce terminolojide "çeviri" anlamına gelen translation sözcüğü kullanılmaktadır. Bu terim Türkçeye translasyon olarak geçmiştir. Translasyon hücrenin sitoplazmasında gerçekleşir. Sitoplazmada bulunan iki ribozom alt birimi translasyon sırasında mRNA zincirinin 5' ucuna bağlanır. Ribozom üzerindeki bağlanma bölgelerinde, mRNA'daki baz üçlülerini (kodon) tRNA'daki tamamlayıcıları olan antikodonlara bağlar. mRNA'daki kodonlara karşılık gelen antikodonu bulunduran tRNA'ların art arda eklenmesi sırasında tRNA'nın 3' ucuna bağlanmış olan amino asitler birbirine bağlanarak polipeptit zincirini oluşturur.
p53 ya da diğer adıyla tümör protein 53 (TP53), Genom Gardiyanı, tümör önleyici p53, hücre döngüsünü düzenleyen bir transkripsiyon faktörüdür. Birçok organizmada kanseri baskılamak için çok önemli bir proteindir. Çok hücreli omurgalılarda kanser oluşumunu önlediği ve tümör baskılayıcı fonskiyon gösterdiği için kritiktir. TP53, genomda mutasyon olmasını önleyerek genom stabilitesini korur. Mutasyonu önleyerek genomun bozulmasını veya değişmesini önlediği için de "genom gardiyanı" olarak da anılır. p53, hücre içerisinde dörtlü (tetramer) bağ yapmış halde işlevseldir.
Nokta ya da gen mutasyonları, DNA nükleotit dizisinde oluşan ve gelecek nesile aktarılabilen değişiklikler olarak adlandırılırlar.
Transkripsiyon, yazılma veya yazılım, DNA'yı oluşturan nükleotit dizisinin RNA polimeraz enzimi tarafından bir RNA dizisi olarak kopyalanması sürecidir. Başka bir deyişle, DNA'dan RNA'ya genetik bilginin aktarımıdır. Protein kodlayan DNA durumunda, transkripsiyon, DNA'da bulunan genetik bilginin bir protein veya peptit dizisine çevirisinin ilk aşamasıdır. RNA'ya yazılan bir DNA parçasına "transkripsiyon birimi" denir. Transkripsiyonda hata kontrol mekanizmaları vardır, ama bunlar DNA çoğalmasındakinden daha az sayıda ve etkindirler; dolayısıyla transkripsiyon DNA çoğalması kadar aslına sadık değildir.
İnsersiyon veya ensersiyon genetikte bir DNA dizisine bir veya daha çok baz çiftinin eklenmesidir. İnsersiyon mutasyonu olarak da adlandırılır. DNA polimerazın kayma yapması sonucu insersiyonlar sık olarak mikrosatelit bölgelerinde olabilir. İnsersiyonlar, büyüklük olarak tek bir baz çiftinden tüm bir kromozoma kadar olabilir.
Genetik kod, genetik malzemede kodlanmış bilginin canlı hücreler tarafından proteinlere çevrilmesini sağlayan kurallar kümesidir. Kod, kodon olarak adlandırılan üç nükleotitlik diziler ile amino asitler arasındaki ilişkiyi tanımlar. Bir nükleik asit dizisindeki üçlü kodon genelde tek bir amino asidi belirler. Genlerin çok büyük çoğunluğu aynı kodla şifrelendiği için, özellikle bu koda kuralsal veya standart genetik kod olarak değinilir, ama aslında pek çok kod varyantı vardır. Yani, standart genetik kod evrensel değildir. Örneğin, insanlarda, mitokondrilerdeki protein sentezi kuralsal koddan farklı bir genetik koda dayalıdır.
L- Selenosistein Sec ya da U şeklinde kısaltılır ve L-Amino asitlerinin 21. proteinogenidir. Bu amino asit L-Sistein’den farklı olarak kükürt atomunun yerine Selenyum atomu barındırır. D-Selenosistein möleküle L- Selenosistein’ın enantiyomerisidir ve önem bakımından pek fazla önemli değildir. Bu yüzden bu yazıda ya da bilimsel makalelerde Selenosistein L- ya da D- olarak hiçbir ön ek almayarak sadece Selenosistein diye bahsedilmişse, burada bahsi geçen L- Selenosistein’dir.
Moleküler evrim, nesiller boyu aktarılacak şekilde, DNA, RNA ve protein gibi hücresel moleküllerin diziliminin değiştirilmesi işlemidir ya da bununla ilgilenen bilim dalıdır. Moleküler evrimin alanı, bu değişimlerdeki kalıpları açıklamak için evrimsel biyoloji ve popülasyon genetiği ilkelerini kullanır. Moleküler evrim başlıca, nükleotid değişimlerinin oranları ve etkilerini, nötr evrimi, doğal seçilimi, yeni genlerin kökenlerini, karmaşık özelliklerin genetik yapısını, türleşmenin genetik temelini, gelişim evrimini ve evrimin genomik ve fenotipik değişikliklere neden olan etkilerini inceler.
Alan hedefli mutajenez, bir genin DNA dizisinde ve herhangi bir gen ürününde spesifik ve kasıtlı değişiklikler yapmak için kullanılan bir moleküler biyoloji yöntemidir. Ayrıca alana özgü mutajenez veya oligonükleotide yönelik mutajenez olarak da adlandırılan bu, DNA, RNA ve protein moleküllerinin yapısını ve biyolojik aktivitesini araştırmak ve protein mühendisliği için kullanılır.
Moleküler biyolojinin santral (merkezi) dogması, biyolojik bir sistem içindeki genetik bilgi akışının bir açıklamasıdır. Orijinal anlamı bu olmasa da, genellikle "DNA RNA'yı, RNA proteini yapar" şeklinde ifade edilir İlk olarak 1957'de Francis Crick tarafından ifade edilmiş, 1958'de ise yayınlanmıştır.
Biyosentez, substratların canlı organizmalarda daha karmaşık ürünlere dönüştürüldüğü çok aşamalı, enzim katalizli bir süreçtir. Biyosentezde basit bileşikler modifiye edilir, diğer bileşiklere dönüştürülür veya makromoleküller oluşturmak üzere birleştirilir. Bu süreç genellikle metabolik yollardan oluşur. Bu biyosentetik yollardan bazıları tek bir hücresel organel içinde yer alırken diğerleri birden fazla hücresel organel içinde yer alan enzimleri içerir. Bu biyosentetik yolların örnekleri arasında çift katlı lipit katmanının bileşenlerinin ve nükleotidlerin üretimi yer alır. Biyosentez genellikle anabolizma ile eş anlamlıdır ve bazı durumlarda birbirinin yerine kullanılır.
Durdurma kodonu, translasyon sürecini sonlandıran bir kodon. Kodonlar üçer nükleotitten oluşur ve amino asitleri kodlar. Translasyon sürecini bitiren üç çeşit durdurma kodonu vardır. Süreç, ribozomun mRNA'daki başlama kodonunu okumasıyla başlar ve durdurma kodonunu okumasıyla sonlanır ve amino asit zinciri tamamlanmış olur. Bazen bir nokta mutasyonu bu kodonu meydana getirir ve translasyon süreci beklenenden önce son bulur.