İçeriğe atla

Anderson-Darling sınaması

Anderson-Darling sınaması, istatistik bilim dalında, bir parametrik olmayan istatistik sınaması olup örneklem verilerinin belirli bir olasılık dağılımı gösterip göstermediğini sınamak için, yani uygunluk iyiliği sınaması için, kullanılmaktadır. Bu sınama ilk defa 1952'de Amerikan istatistikçileri T.W.Anderson Jr. ile D.A.Darling tarafından yayınlanmıştır.[1] Bu sınama Kolmogorov-Smirnov sınamasının değiştirilmesi ve olasılık dağılımının kuyruklarına daha çok ağırlık verilmesi ile ortaya çıkartılmıştır.

Anderson-Darling sınamasının pratikte veriler için normal dağılımdan ayrılıp ayrılmadığını incelemek için kullanılan normallik sınaması yöntemleri arasında bulunan en güçlü sınamalardan biri olduğu iddia edilmektedir.[2] Hem çok küçük (n le; 25) örneklem sayılı veriler için hem de hacmi 200u aşan sanayi kalite kontrol verileri için başarıyla normallik sınaması için kullanıldığı bildirilmiştir.

Genel uygunluk iyiliği sınaması

Anderson-Darling sınaması bir örneklem verisinin tam olarak belirlenmiş bir olasılık dağılımı gösteren bir anakütleden gelip gelmediğinin sınanması için kullanılır. Verilmiş N büyüklük sayıda bir örneklem veri serisi, yani , kullanılır. Bu serinin sınanmansı için hangi olasılık dağılımından geldiğinin ve bu olasılık dağılımını tam olarak belirleyen parametre değerinin veya parametreler değerlerinin verilmesi gerekir.

Anderson-Darling sınaması için sıfır hipotez, her türden uygunluk iyiliği sınaması gibi, örneklem verilerin için tüm parametre değerleri ile iyice belirlenen olasılık dağılımlı anakütleden geldiğidir. Bu sıfır hipotezin çok sınırlı olduğuna dikkat çekilmelidir. Ancak verilmiş parametre veya parametreler için olasılık dağılımı uygulanması incelenmektedir. Eğer sıfır hipotez sınama sonucu ret edilirse, verilerin parametre(ler) ile belirlenmiş dağılıma uymadığı sonucuna varılır. Tekrar edilmelidir ki genel olarak belli bir dağılım ret edilmemektedir; sadece belli parametresi olan dağılım ret edilmektedir.

Elde edilen veriler en küçük değerden en büyük değere kadar bir sıraya konulur. Bu sıraya konulmuş veriler, yani , bir sınama istatistiğinin hesaplanması için kullanılır. Parametresi veya parametreleri verilmiş olasılık dağılımı için birikimli dağılım fonksiyonu kullanılarak bir sıra değerleri bulununur. Bu iki seri kullanılarak önce şu S toplamı elde edilir.

Bu toplam kullanılarak Anderson-Darling istatistiği değeri yani

elde edilir.

Sıfır hipotezde belirtilen olasılık dağılımına göre, elde edilen değerinin belirli bir sabitle (çok kere örneklem hacmi 'N'e bağlı olarak) çarpılması gerektir ve bu değiştirilmiş Anderson-Darling istatistiği adı altında sınama istatistiği olarak kullanılır.

sınama istatistiği belirlenen teorik olasılık dağılımı için p-değeri bulmak için kullanılır. Hesaplanmış p-değeri eğer %1 veya %5 olan anlamlılık seviyesinden büyük ise sıfır hipotez kabul edilir ve örneklem verisi belirlenen olasılık dağılımına uyduğu sonucuna varılır. Ancak bu p-değeri bulma işlemi bir olasılık dağılımı simülasyonu gerekeceği için bilgisayarla sayısal hesaplama gerektirir.

Bazı olasılık dağılımları için özel tablolar geliştirilmiş ve değişik parametre değerleri ve belirtilmiş anlamlılık değerleri için (genellikle %1 ve %5) kritik değerler tabloda belirtilmiştir. Normal dağılım, log-normal dağılım, üstel dağılım, Weibull dağılımı, logistik dağılım ve Tip I uçsal değerler için bu tabloların bulunduğu bilinmektedir. Tablodan bulunan kritik değer, hesaplanmış değeri ile karşılaştırılır. Belirlenmiş olasılık dağılımına uygunluk sıfır hipotezinin kabul edilmesi sonucudur yani hesaplanmış değer tablo kritik değerinden büyükse örneklem verileri belirlenmiş olasılık dağılımına uygunluk gösterir sonucuna varılır.

Normallik sınaması

Anderson-Darling sınamasının bir normallik sınaması olarak kullanılmasındaki genel mantıksal temel, veri serileri ile belirlenmiş normal dağılım arasında bir uzaklık ifade eden empirik dağılım fonksiyonu bulunmasıdır. Bu temel, hipotez olan dağılımın gerçekte bulunduğu kabul edilirse, veri serisinin bir tekdüze dağılıma dönüştürülebilineceği kavramına dayanır. Böylece dönüştürülen örneklem veri serisi bir uzaklık sınaması kullanılarak tekdüze dağılım olup olmadığı test edilir.[3]

Veri serisi yani için olarak verilmiştir. İlk etapta bu seri en küçük değerden en büyük değere doğru sıralanır, yani , hesaplamalar için kullanılır. icin ortalama ve standart sapma bulunur. Sıralı şöyle normalize edilerek değişkenine dönüştürülür:

Bu dönüştürülmüş veriler hesaplamalar da kullanılır.

Örneklemden bulunan ortalama ve standart sapma sıfır hipoteze göre normal varsayılan anakütlenin parametrelerinin yansız kestirimleri sayılır. O zaman dönüştürülmüş veriler kullanıldığı için sıfır hipotez nin dağılımının standart normal dağılım, yani N(0,1), olduğudur.

Standart normal dağılım için birikimli dağılım fonksiyonu olarak ifade edilirse, Anderson-Darling istatistiği yani şöyle yazılır:

veya tekrar eden indeksler yazılmazsa

Eğer herhangi bir ise bu hesaplanamaz ve bu halde anlamsız olduğu için, hesapların bırakılması gerekir.

Eğer hesaplanabilirse, örneklem hacmi 'N'ye için yaklaşık bir ayarlama yapılarak değiştirilmiş Anderson-Darling istatistiği olarak, şöyle bulunur:

Eğer değeri 0.752 değerini aşarsa 5% anlamlılık seviyesinde sıfır hipotez olan normallik ret edilir.

Yapılan araştırmalara göre Anderson-Darling sınaması için sınama istatistiği olan nin normallik sınaması için kullanılan yöntemlerden en güçlü olanlardan biri olduğu bulunmuştur.[3] Buna en yakın güçte yöntemin Cramér von-Mises sınaması için bulunan olduğu da aynı yazıda açıklanmıştır.

İçsel kaynaklar

Kaynakça

  1. ^ Anderson Jr.,T.W. ve Darling,D.A. (1952) "Asymptotic theory of certain 'goodness-of-fit' criteria based on stochastic processes' Annals of Mathematical Statistics C.23 say. 193–212
  2. ^ Stephens,M.A. (1974) "EDF Statistics for Goodness of Fit and Some Comparisons" Journal of the American Statistical Association C.69 say.730–737
  3. ^ a b Stephens/

Dışsal kaynaklar

İlgili Araştırma Makaleleri

Serbestlik derecesi istatistik'te bir istatistiğin kesin hesaplanmasında kullanılan değerlerin sayısının ne kadar değişme serbestisi olduğunu sayısal olarak verir.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

Varyans Analizi istatistik bilim dalında, grup ortalamaları ve bunlara bağlı olan işlemleri analiz etmek için kullanılan bir istatistiksel modeller koleksiyonudur. Varyans Analizi kullanılmaktayken belirlenmiş bir değişkenin gözlemlenen varyansı farklı değişim kaynaklarına dayandırılabilen varyans bileşenine ayrılır. En basit şekliyle varyans analizi birkaç grubun ortalamalarının birbirine eşit mi eşit değil mi olduğunu sınamak için bir çıkarımsal istatistik sınaması olur ve bu sınama iki-grup için yapılan t-test sınamasını çoklu-gruplar için genelleştirir. Eğer, çoklu değişkenli analiz için birbiri arkasından çoklu iki-örneklemli-t-sınaması yapmak istenirse bunun I. tip hata yapma olasılığını artırma sonucu doğurduğu aşikardır. Bu nedenle, üç veya daha fazla sayıda ortalamaların ististiksel anlamlığının sınama ile karşılaştırılması için Varyans Analizleri daha faydalı olacağı gerçeği ortaya çıkmaktadır.

<span class="mw-page-title-main">Tekdüze dağılım (sürekli)</span> Özel olasılık dağılımı

Sürekli tekdüze dağılım (İngilizce: continuous uniform distribution) olasılık kuramı ve istatistik bilim dallarında, her elemanı, olasılığın desteklendiği aynı büyüklükteki aralık içinde bulunabilir, her sürekli değer için aynı sabit olasılık gösteren bir olasılık dağılımları ailesidir. Desteklenen aralık iki parametre ile, yani minimum değer a ve maksimum değer b ile, tanımlanmaktadır. Bu dağılım kısa olarak U(a,b) olarak anılır.

İstatistik biliminde normallik sınamaları bir seri parametrik olmayan istatistik sınamalar çeşididir. Normallik sınamalarının amacı verilmiş bir veri dizisinin normal dağılıma uygunluk iyiliğinin incelenmesidir. Bir sıra parametrik olmayan sınama geliştirilmiş bulunmasına rağmen birçok istatistikçi pratikte daha az kesin ve daha çok subjektif sağduyu ve ekpertiz gerektiren gösterim karşılaştırmalarını kullanmaktadır. Normallik sınamaları yalnız örneklem verilerinin doğrudan doğruya incelenmesinde kullanılmamakta, fakat özellikle ekonometrik analizlerde tek regresyon denklemi tahmininden sonra çıkan hataların normal olup olmadıklarının araştırılması için de çok kullanılmaktadırlar.

İstatistik bilim dalında D'Agostino'nun K2 sınaması normal dağılımdan ayrılmayı ölçmek için kullanılan bir uygulama iyiliği ölçüsüdür. Örneklem basıklık ve çarpıklık ölçülerinin dönüşümlerinden elde edilmiştir. K2 istatistiği şöyle elde edilir:

İstatistik bilim dalında, Jarque-Bera sınaması normal dağılımdan ayrılmayı ölçmek için kullanılan bir uygulama iyiliği ölçüsüdür. İlk defa bu sınamayi ortaya atan ekonometrici A.K.Bera ve C.M.Jarque adları ile anılmaktadır.

İstatistik biliminde önemli bir yeri olan parametrik olmayan istatistik parametrik olmayan istatistiksel modeller ve parametrik olmayan çıkarımsal istatistik, özellikle parametrik olmayan istatistiksel hipotez sınamalar ile ilgilenir. Parametrik olmayan yöntemler çok defa dağılımlardan serbest yöntemler olarak da anılmaktadır, çünkü verilerin bilinen belirli olasılık dağılımı gösteren kaynaklardan geldiği varsayımına dayanmamaktadır.

İstatistik bilim dalı içinde Friedman sıralamalı iki yönlü varyans analizi sonradan çok tanınmış bir iktisatçı olan Amerikan Milton Friedman tarafından ortaya atılan bir parametrik olmayan istatistik sınamasıdır.

Mann-Whitney U testi niceliksel ölçekli gözlemleri verilen iki örneklemin aynı dağılımdan gelip gelmediğini incelemek kullanılan bir parametrik olmayan istatistik testdir. Aynı zamanda Wilcoxon sıralama toplamı testi veya Wilcoxon-Mann-Whitney testi) olarak da bilinmektedir. Bu testi ilk defa eşit hacimli iki örneklem verileri için Wilcoxon (1945) ortaya atmıştır. Sonradan, Mann and Whitney (1947) tarafından değişik büyüklükte iki örneklem problemleri analizleri için uygulanıp geliştirilmiştir.

İstatistik bilim dalı içinde tekrarlama sınaması iki değer (0-1) alan veya iki değer alma şekline dönüştürülmüş bir kategorik değişken için örneklem veri serisinin ardı ardına bir rastgele sıralama ile gelip gelmediğini sınamak için kullanılan bir parametrik olmayan istatistik yöntemidir.

İstatistik bilim dalında, Spearman'ın sıralama korelasyon katsayısı veya Spearman'ın rho, bu istatistiksel ölçüyü ilk ortaya atan İngiliz psikolog Charles Edward Spearman'a atfen adlandırılmıştır. Matematik notasyon olarak çok defa eski Yunan harfi ρ ile belirtilir. Bir parametrik olmayan istatistik ölçüsüdür ve iki değişken arasındaki bağımlılık, yani korelasyon, ölçüsü olarak bulunup kullanılır. Bu demektir ki Spearman'in rho (ρ) katsayısı iki değişken için çokluluklar dağılımı hakkında hiçbir varsayım yapmayarak, bu iki değişken arasında bulunan bağlantının herhangi bir monotonik fonksiyon ile ne kadar iyi betimlenebilineceğini değerlendirmek amaçlı incelemedir.

Shapiro-Wilk Testi, örneklemelerde temel alınan istatistiksel yığının normal dağıldığı bir hipotezin sağlamasını yapan istatistiksel bir hipotez testidir. Parametrik olmayan istatistikte normallik testleri arasında yer almaktadır. Shapiro-Wilk Testi, Amerikalı istatistikçi Samuel Shapiro ile Kanadalı istatistikçi Martin Wilk tarafından 1965 yılında ortaya konuldu. Normal dağılım için analizin grafiksel bilgisini bir anahtar şeklinde normal olasılık grafiği kullanarak özetlemeye yönelik tezlerinin sonucudur.

İstatistik bilim dalında, Kolmogorov-Smirnov (K-S) sınaması parametrik olmayan istatistik olup Andrey Kolmogorov ve Nikolai Smirnov adlarındaki iki Sovyet bilim insanı tarafından oluşturulmuştur.

F-testi istatistik bilimi içinde bir sıra değişik problemlerde kullanılan parameterik çıkarımsal sınama yöntemidir. F-testi sıfır hipotezine göre gerçekte bir F-dağılımı gösteren sınama istatistiği bulunduğu kabul edilen hallerde, herhangi bir istatistiksel sınama yapma şeklidir. Bu çeşit bir istatistiksel sınama önce Ronald Fisher tarafından 1920'li yıllarda tek yönlü varyans analizi için ortaya atılıp kullanılmış ve sonradan diğer şekillerde F-dağılım kullanan sınamalar da ortaya atılınca, bu çeşit sınamalara genel isim olarak F-testi adı verilmesi Ronald Fisher anısına George W. Snecedor tarafından teklif edilip, istatistikçiler tarafından F-testi bir genel isim olarak kabul edilmiştir.

Güven aralığı, istatistik biliminde bir anakütle parametresi için bir çeşit aralık kestirimi olup bir çıkarımsal istatistik çözüm aracıdır. Bir anakütle parametre değerinin tek bir sayı ile kestirimi yapılacağına, bu parametre değerini kapsayabilecek iki sayıdan oluşan bir aralık bulunur. Böylece güven aralıkları bir kestirimin ne kadar güvenilir olduğunu gösterir.

Tek anakütle ortalaması için parametrik hipotez sınaması veya tek-örneklem için sınama veya μ için sınama, bir rastgele örneklem ortalaması ile bu örneklemin çekilmiş olduğunu düşündüğümüz anakütlenin μ ile belirtilen "anakütle ortalaması" hakkında bir hipotez değeri belirtilmesinin anlamlı olup olmadığını araştırmamızı sağlayan parametrik hipotez sınamasıdır.

Çıkarımsal istatistikte, boş hipotez, sıfır hipotez ya da sıfır hipotezi, beklenenin dışında bir durumun olmadığını, mesela gruplar ya da değişkenler arasında bir ilişki bulunmadığını veya ölçülen iki olgunun arasında bir fark olmadığını kabul eden genel bir önermedir. Örneğin tıpta, denenen bir tedavinin etkisiz olması; hukukta, sanığın suçsuz olması birer boş hipotezdir. Modern bilim hipotezler üretip bunları test ederek ilerler; bir boş hipotezinin belirli bir güvenilirlik aralığında istatistiksel olarak kabul ya da reddedilmesi hipotez testleriyle yapılmaktadır.

Ki-kare testi veya χ² testi istatistik bilimi içinde bir sıra değişik problemlerde kullanılan bazıları parametrik olmayan sınama ve diğerleri parametrik sınama yöntemidir. Bu çeşit istatistiksel sınamalarda test istatistiği için "örnekleme dağılımı", sıfır hipotez gerçek olursa ki-kare dağılımı gösterir veya sıfır hipotez "asimptotik olarak gerçek" olursa, eğer sıfır hipotez gerçekse ve eğer örnekleme hacmi istenilen kadar yeterli olarak büyük ise bir ki-kare dağılımına çok yakın olarak yaklaşım gösterir.

Pearson ki-kare testi nicel veya nitel değişkenler arasında bağımlılık olup olmadığının, örnek sonuçlarının belirli bir teorik olasılık dağılımına uygun olup olmadığının, iki veya daha fazla örneğin aynı anakütleden gelip gelmediğinin, ikiden fazla anakütle oranının birbirine eşit olup olmadığının ve çeşitli anakütle oranlarının belirli değere eşit olup olmadığının araştırılmasında kullanılır. İstatistik biliminin çıkarımsal istatistik bölümünde ele alınan iki-değişirli parametrik olmayan test analizlerinden olan ve ki-kare dağılımı'nı esas olarak kullanan ki-kare testlerinden en çok kullanılanıdır. İngiliz istatistikçi olan Karl Pearson tarafından 1900'da ortaya çıkartılmıştır.