İçeriğe atla

Anatoli Vlasov

Anatoly Alexandrovich Vlasov (Rusça: zamто́лийветандрович Вла́сов; d. 20 Ağustos [E.U. 7 Ağustos] 1908 1908 - ö. 22 Aralık 1975), istatistiksel mekanik, kinetik ve özellikle plazma fiziği alanlarında önde gelen bir Rus teorik fizikçiydi.[1]

Biyografi

Anatoly Vlasov, Balaşov'da bir buhar tesisatçısı ailesinde doğdu. 1927'de Moskova Devlet Üniversitesi'ne (MSU) girdi ve 1931'de MSU'dan mezun oldu. Mezun olduktan sonra Vlasov, tüm hayatını geçirdiği MSU'da Nobelistler Pyotr Kapitsa, Lev Landau ve diğer liderlerle işbirliği yaparak çalışmaya devam etti. 1944'te Moskova Devlet Üniversitesi'nde profesör oldu ve 1945'ten 1953'e kadar Moskova Devlet Üniversitesi Fizik Fakültesi teorik fizik bölümünün başkanıydı. 1970'te Lenin Ödülü'nü aldı.

Çalışmaları

Başlıca çalışmaları optik, plazma fiziği, kristal fiziği, yerçekimi teorisi ve istatistiksel fizik alanındadır.

Optik

Optikte, kısmen Vasily Fursov ile, büyük yoğunluklarda (1936-1938) gazlarda genişleyen spektral çizgi analiz etti. Bu çalışmalardaki yeni bir öneri, büyük yoğunluklarda spektrum çizgisi genişlemesinin doğru bir tanımı için atomlar arasındaki uzun menzilli kolektif etkileşimleri kullanmaktı.

Plazma fiziği

Vlasov, plazma fiziği (1938) üzerine yaptığı çalışmalarla dünyaca ünlü oldu. Boltzmann denkleminin, plazmada uzun menzilli kolektif kuvvetlerin varlığından dolayı plazma dinamiklerinin bir tanımına uygun olmadığını gösterdi. Bunun yerine, kendi kendine tutarlı bir alan aracılığıyla uzun menzilli kolektif kuvvetleri hesaba katmak için doğru tanım için şimdi Vlasov denklemi olarak bilinen bir denklem önerildi. Alan, hem yük yoğunluğunu hem de akım yoğunluğunu hesaplamak için Vlasov denkleminde açıklanan dağıtım fonksiyonunun momentleri alınarak belirlenir. Maxwell denklemleri ile birleştiğinde, ortaya çıkan diferansiyel denklem sistemi, doğru başlangıç koşulları ve sınır koşulları sağlandığı sürece iyi bir şekilde konumlandırılır.

Liouville denklemi ve çarpışmasız Boltzmann denklemi ile ilgili olan Vlasov denklemi, plazma fiziğinin temelidir.1945'te Vlasov, kolektif etkileşim hesaba katılarak bu denklemin, politomik sistemlerde özfrekansların varlığı ve kendiliğinden ortaya çıkışı, kristal yapının bir "gaz" dan kendiliğinden ortaya çıkması gibi etkileri herhangi bir ek hipotez ve spesifikasyon olmaksızın açıklayabileceğini gösterdi.

Kristal fiziği

Bu konuda özellikle Vlasov, lineerize edilmiş Vlasov denklemini kullanarak ortamdaki kristal yapının kendiliğinden kökeninin koşullarını incelemiş ve ortamın parçacıklarının sıcaklığı, yoğunluğu ve mikroskobik etkileşimi açısından periyodik yapının orijini için kriterleri bulmuştur.

Kaynakça

  1. ^ Buchwald, Jed Z. (2013). The Oxford handbook of the history of physics (1. bas.). Oxford, Birleşik Krallık: Oxford University Press. ISBN 978-0198805328. 

Ayrıca bakınız

  • Vlasov denklemi

Seçilmiş yayınlar

  • A. A. Vlasov (1961). Many-Particle Theory and Its Application to Plasma. New York, Gordon and Breach. ISBN 0-677-20330-6; ISBN 978-0-677-20330-0.
  • A. A. Vlasov (1966). Statistical Distribution Functions [in Russian]. Nauka.
  • A. A. Vlasov (1978). Nonlocal Statistical Mechanics [in Russian]. Nauka, Moscow.

İlgili Araştırma Makaleleri

Fizik, maddeyi, maddenin uzay-zaman içinde hareketini, enerji ve kuvvetleri inceleyen doğa bilimi. Fizik, Temel Bilimler'den biridir. Temel amacı evrenin işleyişini araştırmaktır. Fizik en eski bilim dallarından biridir. 16. yüzyıldan bu yana kendi sınırlarını çizmiş modern bir bilim olmasına karşın, Bilimsel Devrim'den önce iki bin sene boyunca felsefe, kimya, matematik ve biyolojinin belirli alt dalları ile eş anlamlı olarak kullanılmıştır. Buna karşın, matematiksel fizik ve kuantum kimyası gibi alanlardan dolayı fiziğin sınırlarını net olarak belirlemek güçtür.

<span class="mw-page-title-main">Maxwell denklemleri</span>

Maxwell denklemleri Lorentz kuvveti yasası ile birlikte klasik elektrodinamik, klasik optik ve elektrik devrelerine kaynak oluşturan bir dizi kısmi türevli (diferansiyel) denklemlerden oluşur. Bu alanlar modern elektrik ve haberleşme teknolojilerinin temelini oluşturmaktadır. Maxwell denklemleri elektrik ve manyetik alanların birbirileri, yükler ve akımlar tarafından nasıl değiştirildiği ve üretildiğini açıklamaktadır. Bu denklemler sonra İskoç fizikçi ve matematikçi olan ve 1861-1862 yıllarında bu denklemlerin ilk biçimini yayımlayan James Clerk Maxwell' in ismi ile adlandırılmıştır.

<span class="mw-page-title-main">Termodinamik</span> enerji bilimi

Termodinamik; ısı, iş, sıcaklık ve enerji arasındaki ilişki ile ilgilenen bilim dalıdır. Basit bir ifadeyle termodinamik, enerjinin bir yerden başka bir yere ve bir biçimden başka bir biçime transferi ile ilgilenir. Bu süreçteki anahtar kavram, ısının, belirli bir mekanik işe denk gelen bir enerji biçimi olmasıdır.

<span class="mw-page-title-main">Plazma</span> gaz haldeki maddelerin manyetik kutuplaştırmaya bağlı doğrusal noktalarda oluşan fiziksel ve kimyasal reaksiyonun kontrollü etkileşim süreci

Plazma, gaz hâldeki maddelerin manyetik kutuplaştırmaya bağlı doğrusal noktalarda oluşan fiziksel ve kimyasal tepkimenin kontrollü etkileşim sürecine verilen genel ad. Daha kolay bir tanımla; atomun elektronlardan arınmış hâlidir.

<span class="mw-page-title-main">Max Born</span> Alman-İngiliz fizikçi ve matematikçi (1882–1970)

Max Born kuantum mekaniğinin gelişmesinde etkili olan Alman matematikçi ve fizikçi. Kuantum fiziği dışında katı hâl fiziği ve optiğe katkıda bulunmuş ve 1920-30'larda önemli fizikçilerin çalışmalarının denetimini yapmıştır. Born, yaptığı "Kuantum Mekaniği'nin temelini araştırma, özellikle dalga fonksiyonunun istatistiksel yorumlanması üzerine" adlı çalışması ile 1954 yılında Nobel Fizik Ödülü'nü almıştır.

<span class="mw-page-title-main">Aerodinamik</span> Fizik terimi ve bilim dalı

Aerodinamik, hareket eden katı kütlelerin havayla etkileşimlerini inceleyen bilim dalıdır. Aerodinamik sözcüğü Yunancadan gelmiş olup bu bilim dalı havanın hareketi ile ilgilidir. Parçalı olarak katı bir cisim ile irtibata geçmiş olması, havanın hareketi ve uçağın kanadı gibi, buna örnek olarak gösterilebilir. Aerodinamik akışkan dinamiği ve gaz dinamiğinin bir alt dalıdır ve aerodinamiğin birçok bakış açısı, teorisi bu alanlarda ortaktır. Aerodinamik genellikle gaz dinamiği için kullanılır; gaz dinamiğinin aerodinamikten farkı, tüm gazlar için çalışması ve aerodinamik gibi yalnızca hava ile sınırlanmamış olmasıdır.

<span class="mw-page-title-main">Kuantum mekaniği</span> atom altı seviyede çalışmalar yapan bilim dalı

Kuantum mekaniği veya kuantum fiziği, atom altı parçacıkları inceleyen bir temel fizik dalıdır. Nicem mekaniği veya dalga mekaniği adlarıyla da anılır. Kuantum mekaniği, moleküllerin, atomların ve bunları meydana getiren elektron, proton, nötron, kuark, gluon gibi parçacıkların özelliklerini açıklamaya çalışır. Çalışma alanı, parçacıkların birbirleriyle ve ışık, x ışını, gama ışını gibi elektromanyetik ışınımlarla olan etkileşimlerini de kapsar.

Yoğun madde fiziği, maddenin yoğun hallerinin fiziksel özellikleriyle ilgilenen bir fizik dalıdır. Yoğun madde fizikçileri bu hallerin davranışını fizik kurallarını kullanarak anlamaya çalışır. Bunlar özellikle kuantum mekaniği kuralları, elektromanyetizma ve istatistiksel mekaniği içerir. En bilinen yoğun fazlar katı ve sıvılardır, harici yoğun fazlar ise düşük sıcaklıktaki bazı materyaller tarafından gösterilen üstünileten faz, atom kafeslerindeki dönüşlerin ferromanyetik ve antiferromanyetik fazları ve soğuk atom sistemlerinde bulunan Bose-Einstein yoğunlaşması. Araştırma için uygun sistemlerin ve fenomenlerin çeşitliliği yoğun madde fiziğini modern fiziğinin en aktif alanı yapıyor. Her 3 Amerikan fizikçiden biri kendini yoğun madde fizikçisi olarak tanımlıyor ve Yoğun Madde Fiziği Bölümü Amerikan Fizik Topluluğu’ndaki en geniş bölümdür. Bu alan kimya, malzeme bilimi ve nano teknoloji ile örtüşür ve atom fiziği ve biyofizikle de yakından ilgilidir. Teorik yoğun madde fiziği teorik parçacık ve nükleer fizikle önemli kavramlar paylaşır.

<span class="mw-page-title-main">Ludwig Boltzmann</span> Avusturyalı fizikçi (1844-1906)

Ludwig Eduard Boltzmann. Avusturyalı fizikçi. İstatistiksel mekanik ve istatistiksel termodinamik alanındaki buluşları ve katkıları ile ünlüdür. Henüz tartışmalı olduğu günlerde dahi atom teorisinin en önemli savunucuları arasında yer almıştır.

<span class="mw-page-title-main">Klasik elektromanyetizma</span>

Klasik elektromanyetizm, klasik elektromıknatıslık ya da klasik elektrodinamik teorik fiziğin elektrik akımı ve elektriksel yükler arasındaki kuvvetlerin sonuçlarını inceleyen dalıdır. kuantum mekaniksel etkilerin ihmal edilebilir derecede küçük olmasını sağlayacak kadar büyük ölçütlü sistemler için elektromanyetik fenomenlerin mükemmel bir açıklamasını sunar.

Perdeleme, hareketli yük taşıyıcılarının varlığından ortaya çıkan elektrik alanının sönümünü ifade eder. Metaller ve yarıiletkenlerdeki iletim elektronları ve iyonize olmuş gazlar(klasik plazma) gibi yük taşıyıcı akışkanlarda gözlemlenir. Elektriksel olarak yüklenmiş parçacıklardan oluşan bir akışkanda, her çift parçacık Coulomb kuvveti ile etkileşir,

.
<span class="mw-page-title-main">Lev Landau</span> Sovyet teorik fizikçi (1908-1968)

Lev Davidovich Landau teorik fizik alanında pek çok katkı ve araştırma yapmış Bakü doğumlu Yahudi asıllı, Sovyet-Azerbaycanlı fizikçidir. Yoğun maddenin kuantum mekaniği hakkında çalışan Landau, süperakışkanlığı öngörmüş ve 1962 Nobel Fizik Ödülü'nü kazanmıştır. Evgeny Mikhailowich Lifschitz ile çeşitli dillere çevirilen ve klasikleşen fizik kitapları serisini oluşturmuştur.

Ludwig Waldmann gazlarda taşınım olayları konusunda uzmanlaşmış Alman fizikçi. Waldmann-Snider denklemini türetmiştir.

<span class="mw-page-title-main">Termodinamik ve istatistiksel fizik kronolojisi</span> Termodinamik ve istatistiksel fizik ile ilgili olayların kronolojisidir.

Termodinamik ve istatistiksel fizik ile ilgili olayların kronolojisidir.

Atomik, moleküler ve optik fizik, bir ya da birkaç atomun ölçeğinde, madde-madde ve ışık-madde etkileşimi çalışmadır ve enerji, birkaç elektron voltları etrafında ölçeklenir. Üç alanla yakından ilişkilidir. AMO teorisi, klasik, yarı klasik ve kuantum işlemlerini kapsar. Tipik olarak, teori ve emisyon uygulamaları, elektromanyetik yayılım ve emilme, spektroskopi analizi, lazer ve mazerlerin kuşağı ve genel olarak maddenin optik özellikleri, uyarılmış atom ve moleküllerden, bu kategorilere ayrılır.

<span class="mw-page-title-main">Nikolay Umov</span> Rus fizikçi ve matematikçe

Nikolay Alekseevich Umov, Umov etkisi ve poynting vektörü olgusunun kâşifi olarak bilinen Rus fizikçi ve matematikçidir.

Hesaplamalı kimya, kimya problemlerini çözmeye yardımcı olmak için bilgisayar simülasyonunu kullanan bir kimya dalıdır. Moleküllerin, katıların yapı ve özelliklerini hesaplamak için verimli bilgisayar programlarına dahil edilmiş teorik kimya yöntemlerini kullanır. Bu yöntemlerin kullanılmasının nedeni, hidrojen moleküler iyonu ile ilgili nispeten yeni sonuçlar dışında, kuantum çok-gövdeli(many-body) problemlerin analitik olarak çözülemez oluşudur. Hesaplama sonuçları normal olarak kimyasal deneylerle elde edilen bilgileri tamamlarken, bazı durumlarda gözlemlenmeyen kimyasal olayları da tahmin edebilmektedir. Yeni ilaç ve materyallerin tasarımında yaygın olarak kullanılmaktadır.

İstatistik fizikde,BBGKY hiyerarşisi (Bogoliubov–Born–Green–Kirkwood–Yvon hiyerarşisi, bazen Bogoliubov hiyerarşisi olarak alınır) çok sayıda etkileşen parçacıkdan oluşan bir sistemin dinamiklerini tanımlayan bir dizi denklemdir. BBGKY hiyerarşisinde S- parçacığı için denklem dağıtım fonksiyonu (olasılık yoğunluk fonksiyonu) (s + 1)-parçacık dağılım işlevi eşitlikli bir denklem zincirini içerir. Bu kuramsal sonuç, Bogoliubov, Born, Green, Kirkwood ve Yvon'un ardından isimlendirilmiştir.

<span class="mw-page-title-main">Marian Smoluchowski</span> Leh fizikçi

Marian Smoluchowski Avusturya-Macaristan İmparatorluğunun Polonya topraklarında çalışmış Polonyalı fizikçi. İstatistiksel fizikte bir öncü, ayrıca hırslı bir dağcıydı.

<span class="mw-page-title-main">Doğrusal olmayan optik</span>

Doğrusal olmayan optik ya da nonlineer optik, ışığın doğrusal olmayan sistem ve malzemelerdeki davranışı ile özelliklerini inceleyen optiğin bir alt dalıdır. Bu malzemelerde elektrik alan () ile polarizasyon yoğunluğu () arasındaki ilişki doğrusal değildir; bu durum daha çok yüksek genlikte (108 V/m seviyelerinde) ışık veren lazerlerde ve lityum niobat gibi kristal yapılarında görülür. Schwinger sınırından daha kuvvetli alanlarda vakum da doğrusallığını kaybeder. Süperpozisyon prensibi bu malzemeler için geçerli değildir.