Matematik ; sayılar, felsefe, uzay ve fizik gibi konularla ilgilenir. Matematikçiler ve filozoflar arasında matematiğin kesin kapsamı ve tanımı konusunda görüş ayrılığı vardır.
Leopold Kronecker sayı teorisi, cebir ve mantık üzerine çalışan bir Alman matematikçiydi. Georg Cantor'un küme teorisi üzerine çalışmalarını eleştirdi ve Weber (1893) tarafından "Almanca: Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk " söylemiyle alıntılandı. Kronecker, Ernst Kummer'in öğrencisi ve ömür boyu arkadaşıydı.
Bir asal sayı, yalnızca 1'den büyük olup kendisinden küçük iki doğal sayının çarpımı olarak ifade edilemeyen bir doğal sayıdır. 1'den büyük ve asal olmayan doğal sayılara bileşik sayı adı verilir. Örneğin, 5 bir asal sayıdır çünkü onu bir çarpım olarak ifade etmenin mümkün olan yolları, 1 × 5 veya 5 × 1, yalnızca 5 sayısını içermektedir. Ancak, 4 bir bileşik sayıdır çünkü bu, her iki sayının da 4'ten küçük olduğu bir çarpım şeklindedir. Asal sayılar, aritmetiğin temel teoreminden ötürü sayı teorisi alanında merkezi öneme sahiptir: 1'den büyük her doğal sayı, ya bir asal sayıdır ya da asal sayıların çarpımı olarak, sıralamalarından bağımsız bir şekilde, benzersiz olarak çarpanlarına ayrılabilir.
Ernst Eduard Kummer bir Alman matematikçiydi. Uygulamalı matematik konusunda yetenekli olan Kummer, Alman ordusu subaylarını balistik konusunda eğitti; daha sonra, Leopold Kronecker'in matematik kariyerine ilham verdiği, lisenin Almanca karşılığı olan gymnasium’da 10 yıl öğretmenlik yaptı.
Johann Peter Gustav Lejeune Dirichlet, sayı teorisi ve Fourier serileri teorisi ile matematiksel analizdeki diğer konulara derin katkılarda bulunan Alman bir matematikçiydi. Bir fonksiyonun modern biçimsel tanımını veren ilk matematikçilerden biri olarak kabul edilmektedir.
Christian Goldbach, hukuk eğitimi de almış, sayılar teorisi konusunda çalışmalarıyla ünlü bir Alman matematikçiydi. Bugün Goldbach varsayımıyla anılıyor.
Basel problemi, Pietro Mengoli tarafından 1644'te ortaya atılan ve 1735 yılında Leonhard Euler tarafından çözülen ünlü bir sayı kuramı problemidir. Zamanın matematikçilerini bir hayli uğraştırmış olan problem Euler'i 28 yaşında büyük ün sahibi yapmıştır. Euler, problemi genelleştirmiş ve onun düşünceleri Bernhard Riemann'ın 1859'da yazdığı Belirli Bir Büyüklükten Küçük Asal Sayılar Üzerine adlı makaleye esin kaynağı olmuştur. Problem, adını Euler'in ve Bernoulli ailesinin yaşadığı kent olan Basel'den almıştır.
Matematikte, birkaç fonksiyon ya da fonksiyon gruplarının kendi isimleri yeterli öneme layıktır. Bu makaleler fonksiyonları açıklamak için olan daha ayrıntılı olarak gösteren bir listedir. İstatistik dışı ve matematiksel fizik gelişmeleri sonucu özel fonksiyonlar büyük bir teori olmuştur. Modern bir, soyut incelik fonksiyon uzayıları geniş karşılaştırma görünümü, sonsuz-boyutlu ve 'isimsiz' fonksiyonlar içindeki ve simetri ya da ilişki harmonik analiz ve grup temsilileri gibi özellikler ile özel fonksiyonlar ile seçilmiştir.
Çarpım fonksiyonu, sayılar teorisinde bir f(n) aritmetik fonksiyonudur. Bu fonksiyon, tanım kümesindeki her x ve y çifti için çarpma işlemini koruyan fonksiyondur.
Gorō Shimura , Princeton Üniversitesi'nde sayı teorisi, otomorfik formlar ve aritmetik geometri alanlarında çalışan Japon matematikçi ve Michael Henry Strater Matematik Fahri Profesörü idi. Abelyen varyetelerin ve Shimura varyetelerinin karmaşık çarpımı teorisini geliştirmesinin yanı sıra, sonuçta Fermat'ın Son Teoreminin kanıtına yol açan Taniyama-Shimura varsayımını ortaya koymasıyla biliniyordu.
Bu, Wikipedia'da yer alan sayı teorisi konularıyla ilgili sayfaların bir listesidir.
André Weil, sayılar teorisi ve cebirsel geometri alanındaki çalışmaları ile tanınan Fransız matematikçidir. Matematiksel Bourbaki grubunun kurucu üyesiydi. Filozof Simone Weil kız kardeşi, yazar Sylvie Weil ise kızıdır.
Sayılar teorisinde şanslı sayılar, belli bir kalbur tarafından üretilen bir sayı dizisidir. Bu kalbur, asal sayıları üreten Eratosten kalburu ile benzerlik gösterir. Bununla birlikte, Eratosten kalburunda sayılar başlangıçtaki konumlarına göre silinirken bu kalburda sayılar, belli bir aşamada geriye kalan sayıların arasındaki konumlarına göre silinir.
İlk olarak ideal teori olarak bilinen Komütatif (değişmeli) cebir, cebirin değişmeli halkalarını, halkaların ideallerini ve bu halkalar üzerindeki modülleri inceleyen dalıdır. Hem cebirsel geometri hem de cebirsel sayı teorisi değişmeli cebire dayanır. Değişmeli halkaların öne çıkan örnekleri arasında polinom halkaları; sıradan tamsayılar dahil olmak üzere cebirsel tam sayı halkaları ; ve p -sel tam sayıları içerir.
Matematikte, değişmeli grup olarak da adlandırılan Abel grubu, grup işleminin iki grup öğesine uygulanmasının sonucunun yazıldıkları sıraya bağlı olmadığı bir gruptur. Yani grup işlemi değişmelidir. Bir işlem olarak toplamayla tamsayılar ve gerçek sayılar değişmeli grupları oluşturur ve değişmeli grup kavramı bu örneklerin bir genellemesi olarak görülebilir. Abel grupları, 19. yüzyılın başlarındaki matematikçi Niels Henrik Abel'in adını ithafen adlandırılmıştır.
Matematikte homoloji, değişmeli gruplar veya modüller gibi bir dizi cebirsel nesneyi topolojik uzaylar gibi matematiksel nesnelerle ilişkilendirmenin genel bir yoludur. Homoloji grupları özgün olarak cebirsel topolojide tanımlanmıştır. Soyut cebir, gruplar, Lie cebirleri, Galois teorisi ve cebirsel geometri gibi çok çeşitli başka alanlarda da benzer yapılar mevcuttur.
Cebirde halka teorisi, toplama ve çarpmanın tanımlandığı ve tamsayılar için tanımlanan işlemlere benzer özelliklere sahip cebirsel yapılar olan halkaların incelenmesidir. Halka teorisi; halkaların yapısını, temsillerini veya farklı dillerde modülleri, özel halka sınıflarını ve homolojik özellikler ve polinom özdeşlikleri gibi uygulamaları inceler.
Matematikte, bir kategori, "oklar" ile birbirine bağlanan "nesneler" koleksiyonudur. Bir kategorinin iki temel özelliği vardır. Bunlar okları birleşmeli olarak oluşturma yeteneği ve her nesne için bir birim okunun varlığıdır. Basit bir örnek; nesneleri küme olan ve okları işlev olan kümeler kategorisidir.
Bu bir sayılar teorisi zaman çizelgesidir.