İçeriğe atla

Amdahl yasası

Bilgisayar mimarı Gene Amdahl'ın ismini alan Amdahl Yasası, sistemin bir parçasının hızlandırılması sonucunda, sistemin bir bütün olarak ele alındığında toplam hızlanmasının ne olacağını hesaplamak için kullanılır. Sıklıkla, birden fazla işlemci kullanıldığında erişilebilecek azami hızlanmayı tahmin etmek için paralel hesaplamalarda da kullanılır.

Amdahl Yasası'nın genelleştirilmiş hali:

Burada;
Pk: Hızlandırılacak ya da yavaşlatılacak buyrukların, tüm buyruklara oranı.
Sk: Hızlandırma çarpanı. Bu çarpan için, 1 temel kabul edilir. Çarpan 1 olduğunda, hızlanma ya da yavaşlama yoktur.

Her bir oran ve hızlandırma için bir etiket görevi görür.
Sistem değişikliğinden kaynaklanan hızlanma veya yavaşlamaların sayısı.

Tanım

Amdahl Yasası, bir algoritmanın paralel gerçeklemelerinin, seri gerçeklemesi ile arasındaki beklenen hızlanma değerlerinin ilişkisi için bir modeldir. Örneğin, eğer bir algoritmanın paralel gerçeklemeleri, algoritmanın işlemlerinin 12%'sini keyfi olarak hızlı çalıştırabiliyorsa ve işlemlerin geri kalan 88%'i paralelleştirilebilir değilse, Amdahl Yasası'na göre, paralelleştirilmiş versiyonun azami hızlanması, paralelleştirilmemiş gerçeklenmelerden

kadar hızlıdır.

Daha teknik olmak gerekirse bu yasa, işlemlerin P'lik bir oranının etkilenerek S kadar hızlandırıldığı bir noktada erişilebilecek hızlanmayı hesaplamada kullanılır. Örneğin, eğer bir iyileştirme süreci, işlemlerin 30%'unu hızlandırabiliyorsa, P 0,3; ve eğer bu süreç, etkilenen bölümü eskisine göre iki kat daha hızlı çalıştırabiliyorsa, S 2 olacaktır. Amdahl Yasası'na göre, bu iyileştirmenin toplam hızlandırması;

olacaktır.

Bu formülün nasıl çıkarıldığını görmek için; eski işlem süreci süresinin 1 birim olduğunun varsayalım. Yeni işlem sürecinin alacağı zaman, hızlandırılmamış buyrukların işlenmesi için gerek süre (yani 1 - P) ile hızlandırılmış buyrukların işlenmesi için gereken sürenin toplanmasıyla elde edilir. Hızlandırılmış buyrukların işlenmesi için gereken süre, hızlandırılmış bölümün, hızlanmadan önce aldığı sürenin hızlanma katsayısına bölünmesi ile elde edilir. Yani P/S ile hesaplanır. Toplam hızlanma ise, hızlanmadan önce işlem için gereken sürenin, hızlanmadan sonra gereken süreye bölünmesi ile bulunur. Amdahl Yasası'nın gerektirdiği formül de tam olarak bunu yapmaktadır.

Başka bir örneği ele alacak olursak: Bize, dört bölüme ayrılmış bir işlem verilmiş olsun ve bu bölümlerin toplam buyruk sayısına oranları şu şekilde olsun: P1 = 11%, P2 = 18%, P3 = 23%, P4 = 48%. Görüldüğü gibi, bu oranların toplamı 100%'e ulaşmaktadır. Verilere göre, P1'de hızlanma veya yavaşlama olmamaktadır, buna göre S1 = 1 alınır. P2 5 kat hızlanmaktadır, yani S2 = 5, P3 20 kat hızlanmaktadır, yani S3 = 20, P4 ise 1.6 kat hızlanmaktadır ve S4 = 1.6 alınmaktadır. formülünü kullanarak, çalışma zamanını olarak hesaplarız. Buna göre çalışma zamanı, hızlanmadan önceki zamanın yarısından biraz daha azdır. Eski çalışma zamanı, elbette ki 1 birim olarak kabul edilmiştir. Toplam hızlanmayı hesaplamak için, formülünü kullanırız ve toplam hızlanmanın, 2 kattan biraz daha fazla olduğunu görürüz. 20 kat ve 5 kat hızlanan buyrukların, toplam işlem içindeki oranlarının az olması nedeniyle, toplam hızlanmaya fazla bir etkisi olmadığını görebiliyoruz.

Ardışık Bir Programda Hızlanma

Bir görevin, iki birbirinden bağımsız parçası (A ve B) olduğunu varsayalım. B, toplam yürütme zamanının hemen hemen 25%'ini almaktadır. Yoğun bir çaba sarf ederek, bu B bölümünü 5 kat hızlandırılsa bile, bu hızlandırmanın, toplam yürütme zamanına etkisi çok fazla olmayacaktır. Diğer yandan, A bölümünü 2 kat hızlandırmak bile toplam yürütme zamanını büyük oranda düşürecektir. Buna ek olarak, A bölümünü 2 kat hızlandırmak, B bölümünü 5 kat hızlandırmaktan çok daha az bir çabayla gerçekleştirilebilir.

Bir bölümü kat kadar hızlandırılmış bir ardışık programın azami hızlanması,

Azami Hızlanma olarak bulunur.

Burada (), hızlandırmadan önce, hızlandırılmamış bölümün tuttuğu süredir. Örneğin:
  • Eğer B bölümü (mavi) 5 kat hızlandırılırsa, p = 5 (kırmızı) = 3 saniye, (mavi) = 1 saniye ve
    Azami hızlanma
  • Eğer A bölümü (kırmızı) 2 kat hızlandırılrsa, p = 2, (mavi) = 1 saniye, (kırmızı) = 3 saniye ve
    Azami hızlanma (Daha iyi!)

Buna göre, A'yı 2 kat hızlandırmak, B'yi 5 kat hızlandırmaktan daha iyi sonuç vermektedir.

  • A'yı 2 etmeniyle hızlandırmak, toplam program hızında +60% 'lık bir artış sağlamaktadır.
  • B'yi 5 etmeniyle hızlandırmak ise ki bu süreç A'yı hızlandırmaktan daha fazla efor gerektirecektir, toplam program hızında yalnızca +25%'lik bir artış sağlayacaktır.

Paralellik

Paralelliğin özel bir durumunda Amdahl yasası der ki; eğer F ardışık (paralel değil) bir işlemin bir parçasıysa ve (1 - F) paralelleştirilebilir kısımsa, N işlemcili kullanarak azami hızlanma:

‘dır.

Limitini aldığımızda N sonsuza yönelir, azami hızlanma 1/F’e yönelir. Uygulamada maliyet/başarım oranı, (1-F)/N, F’ten küçük olduktan sonra N arttıkça düşer.

Örneğin, F %10 ise problemin azami hızlanması 10’un çarpanları kadar olabilir. N’in büyüklüğünün bir önemi yoktur. Bunun için, paralel işlem sadece ya az sayıda işlemci için ya da F‘in çok küçük olduğu problemlerde kullanışlıdır. Paralel programlamanın büyük bir kısmı F değerini olabilecek en küçük değerde tutmayı amaçlar.

Sınırlamalar

Amdahl’ın yasasına göre, kuramsal azami hızlanma, N işlemci ile N olur. Bu doğrusal (lineer) hızlanma olarak adlandırılır. Ancak uygulamada N işlemcisi olan bir makinede N’den fazla hızlanma olması görülmeyen bir durum değildir. Buna üstün doğrusal hızlanma denir. Bunun olası bir nedeni önbellek toplanmasıdır. Paralel bilgisayarlarda, sadece işlemci sayılarının değiştirilmesiyle değil, farklı işlemcilerin toplanan önbelleklerin büyüklüğü ile yapılır. Daha büyük toplanan önbellek boyutu ile daha fazla veri kümesi veya veri kümesinin tamamı önbelleklere sığabilir. Böylece bellek erişim zamanı düşer ve ek hızlanma sağlanır.

Amdahl’ın Başparmak Kuralı

Amdahl’ın başparmak kuralı, bilgisayarın desteklediği her saniye başına buyruk için 1 bayt bellek ve 1 bit/saniye G/Ç gerektiğidir. Bu Amdahl’ın Diğer Kanunları başlığı altında işlenmektedir.

Kaynakça

  • Gene Amdahl, "Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities", AFIPS Conference Proceedings, (30), pp. 483–485, 1967. Note: Gene Amdahl has approved the use of his complete text in the Usenet comp.sys.super news group FAQ which goes out on the 20th of each month.

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Maxwell denklemleri</span>

Maxwell denklemleri Lorentz kuvveti yasası ile birlikte klasik elektrodinamik, klasik optik ve elektrik devrelerine kaynak oluşturan bir dizi kısmi türevli (diferansiyel) denklemlerden oluşur. Bu alanlar modern elektrik ve haberleşme teknolojilerinin temelini oluşturmaktadır. Maxwell denklemleri elektrik ve manyetik alanların birbirileri, yükler ve akımlar tarafından nasıl değiştirildiği ve üretildiğini açıklamaktadır. Bu denklemler sonra İskoç fizikçi ve matematikçi olan ve 1861-1862 yıllarında bu denklemlerin ilk biçimini yayımlayan James Clerk Maxwell' in ismi ile adlandırılmıştır.

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

<span class="mw-page-title-main">Kinetik enerji</span> bir cismin harekiyle oluşan enerji

Kinetik enerji, fiziksel bir cismin hareketinden dolayı sahip olduğu enerjidir.

<span class="mw-page-title-main">İdeal gaz yasası</span>

İdeal gaz yasası, sadece teoride olan ideal gazların durumları hakkında denklemler sağlayan bir yasadır. Bir miktar gazın durumu; basıncı, hacmi ve sıcaklığına göre belli olur. Bu denklem aşağıdaki gibidir:

Paralel hesaplama ya da Koşut hesaplama, aynı görevin, sonuçları daha hızlı elde etmek için çoklu işlemcilerde eş zamanlı olarak işletilmesidir. Bu fikir, problemlerin çözümünün ufak görev parçalarına bölünmesi ve bunların eş zamanlı olarak koordine edilmesine dayanır. Paralel hesaplama ile performans artar, büyük sorunlar daha az sürede çözülür ve bilimdeki gelişmeler paralel hesaplamaya gereksinim duyar.

<span class="mw-page-title-main">Karekök</span>

Matematikte negatif olmayan bir gerçel sayısının temel karekök bulma işlemi şeklinde gösterilir ve karesi (bir sayının kendisiyle çarpılmasının sonucu) olan negatif olmayan bir gerçek sayıyı ifade eder.

<span class="mw-page-title-main">Açısal momentum</span> Fiziksel nicelik

Açısal momentum, herhangi bir cismin dönüş hareketine devam etme isteğinin bir göstergesidir ve bu nicelik cismin kütlesine, şekline ve hızına bağlıdır. Açısal momentum bir vektör birimidir ve cismin belirli eksenler üzerinde sahip olduğu dönüş eylemsizliği ile dönüş hızını ifade eder.

<span class="mw-page-title-main">İş (fizik)</span>

Fizikte, bir kuvvet bir cisim üzerine etki ettiğinde ve kuvvetin uygulama yönünde konum değişikliği olduğunda iş yaptığı söylenir. Örneğin, bir valizi yerden kaldırdığınızda, valiz üzerine yapılan iş kaldırıldığı yükseklik süresince ağırlığını kaldırmak için aldığı kuvvettir.

<span class="mw-page-title-main">Gaz yasaları</span>

Gaz yasaları, gazlardaki termodinamik sıcaklık (T), basınç (P) ve hacim (V) aralarındaki ilişkileri açıklayan bir takım kanundur. Rönesans'ın geç dönemleriyle 19. yüzyıl arasındaki dönemde bulunmuş birkaç yasadan oluşur.

<span class="mw-page-title-main">Tork</span> bir kuvvetin nesnenin ekseninde, dayanak noktasında ya da çevresinde dönme eğilimi

Tork, kuvvet momenti ya da dönme momenti, bir cismin bir eksen etrafındaki dönme, bükülme veya burulma eğilimini dönme ekseni merkezine indirgeyerek ölçen fiziksel büyüklüktür. Torkun büyüklüğü moment kolu uzunluğuna, uygulanan kuvvete ve moment kolu ile kuvvet vektörü arasındaki açıya bağlıdır.

<span class="mw-page-title-main">Ampère kanunu</span>

Klasik elektromanyetizmada Ampère yasası kapalı bir eğri üzerinden integrali alınmış manyetik alanla o eğri üzerindeki elektrik akımı arasındaki ilişkiyi açıklayan yasadır. James Clerk Maxwell yasayı hidrodinamik olarak 1861 tarihli Fizikte kuvvet çizgileri üzerine makalesinde tekrar kanıtlar. Yasanın matematiksel ifadesi şu anda klasik elektromanyetizmayı oluşturan dört temel Maxwell denkleminden biridir.

<span class="mw-page-title-main">Merkezî işlem birimi tasarımı</span>

Merkezî işlem birimi tasarımı bilgisayarın temel bileşenlerinden birisi olan Merkezî işlem birimini (MİB) etkin kullanmayı yönelik bir tasarımdır. MİB bilgisayar donanımının temel bileşenlerinden birisidir. İşlemcisi olmayan bir bilgisayar düşünülemez. Bu yüzden işlemcinin tasarımı ne kadar iyi olursa sistem de o derece hızlı olacaktır. İşlemciyi hızlandırmanın değişik yolları vardır. Bunlardan bazıları:

  1. Buyrukların paralel çalışmasını sağlamak
  2. Çok vuruşluk işlemciler kullanmak
  3. Boru hattı kullanmak
  4. Çoklu işleme kullanmak
<span class="mw-page-title-main">Gustafson yasası</span>

Gustafson yasası, yeterince büyük bir sorunun verimli bir biçimde koşutlaştırılabileceğini öngören bir bilgisayar mühendisliği yasasıdır. 1988 yılında John L. Gustafson'un geliştirdiği bu kural, bir programın koşutluk derecesine bağlı olarak ne ölçüde hızlandırılabileceğini belirleyen Amdahl yasası ile yakından ilintilidir.

Karp-Flatt ölçütü, koşut işlemcili sistemlerde kodun koşutlaştırılma derecesini gösteren bir ölçüdür. Amdahl yasası ve Gustafson yasası ile uyumlu olan ölçüt 1990 yılında Alan H. Karp ve Horace P. Flatt tarafından ortaya atılmıştır.

Açısal hız, bir objenin birim zamandaki açısal olarak yer değiştirme miktarına verilen isimdir. Açısal hız vektörel olup bir cismin bir eksen üzerindeki dönüş yönünü ve hızını verir. Açısal hızın SI birimi radyan/saniyedir, ancak başka birimlerde de ölçülebilir. Açısal hız genellikle omega sembolü ile gösterilir. Açısal hızın yönü genellikle dönüş düzlemine diktir ve sağ el kuralı ile bulunabilir.

İmpuls veya itme, bir cismin çizgisel momentumundaki değişimdir. J ile gösterilir. Cisme etki eden ortalama kuvvetle, kuvvetin etki etme süresi çarpılarak hesaplanabilir. İmpuls, kuvvet vektörünün integraliyle elde edildiği için bir vektördür. SI birimi newton saniyedir (N·s) Temel büyüklükler cinsinden kilogram metre bölü saniyedir (kg·m/s).

NetBurst, İntel'in 2000 yılında piyasaya sürdüğü Pentium 4 işlemci markasının mikromimarisine verilen isimdir. 2006 Temmuz'unda Core mikromimarisinin çıkışına kadar İntel işlemcilerin mikromimarisi olmuştur. Selefi P6 mikromimarisine göre en önemli özelliği derin boru hattı yapılanmasıyla avantaj sağladığı yüksek saat sıklığıdır. Temel olarak dört ana parçadan oluşmaktadır: Sıralı(ing. In-order) Ön-Uç(ing. Front-end), Sırasız(ing. out-of-order) yürütme birimi, Tam sayı ve kayan nokta yürütme birimleri ve bellek altdizgesi.

Matematiksel fizikte, hareket denklemi, fiziksel sistemin davranışını, sistem hareketinin zamanı ve fonksiyonu olarak tanımlar. Daha detaya girmek gerekirse; hareket denklemi, matematiksel fonksiyonların kümesini "devinimsel değişkenler" cinsinden izah eder. Normal olarak konumlar, koordinat ve zaman kullanılır ama diğer değişkenler de kullanılabilir: momentum bileşenleri ve zaman gibi. En genel seçim genelleştirilmiş koordinatlardır ve bu koordinatlar fiziksel sistemin karakteristiğinin herhangi bir uygun değişkeni olabilirler. Klasik mekanikte fonksiyonlar öklid uzayında tanımlanmıştır ama görelilikte öklid uzayı, eğilmiş uzay ile tanımlanmıştır. Eğer sistemin dinamiği biliniyor ise denklemler dinamiğin hareketini izah eden diferansiyel denklemlerin çözümleri olacaktır.

<span class="mw-page-title-main">Planck yasası</span> belirli bir sıcaklıkta termal denge durumunda bulunan bir kara cisim ışımasının yaydığı elektromanyetik radyasyonu ifade eden terim

Planck yasası belirli bir sıcaklıkta termal denge durumunda bulunan bir kara cisim ışımasının yaydığı elektromanyetik radyasyonu ifade eder. Yasa 1900 yılında Max Planck bu ismi önerdikten sonra isimlendirilmiştir. Planck yasası modern fiziğin ve kuantum teorisinin öncül bir sonucudur.

<span class="mw-page-title-main">Ortalama ayrıklık</span> uzayda bir nesnenin yörüngesini belirtmek için kullanılan yörünge elemanlarından biri

Gök mekaniğinde ortalama ayrıklık, bir eliptik yörünge periyodunun, yörüngedeki cismin periapsis'i geçmesinden bu yana geçen, klasik iki cisim probleminde o cismin konumunun hesaplanmasında kullanılabilecek bir açı olarak ifade edilen kesiridir. Bu, hayali bir cismin, eliptik yörüngesindeki gerçek cisimle aynı yörünge peryodunda, sabit hızla dairesel bir yörüngede hareket etmesi durumunda sahip olacağı çevre merkezden açısal uzaklıktır.